對于四面體ABCD,給出下列四個命題:
①若AB=AC,BD=CD,則BC⊥AD; ②若AB=CD,AC=BD,則BC⊥AD;
③若AB⊥AC,BD⊥CD,則BC⊥AD;④若AB⊥CD,AC⊥BD,則BC⊥AD;
其中正確的命題的序號是( )
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,棱柱ABCD-A
1B
1C
1D
1的底面ABCD為菱形,平面AA
1C
1C⊥平面ABCD.
(1)證明:BD⊥AA
1;
(2)證明:平面AB
1C//平面DA
1C
1(3)在直線CC
1上是否存在點P,使BP//平面DA
1C
1?若存在,求出點P的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在四棱錐
中,
⊥平面
,
⊥平面
,
,
.
(1) 證明:
;
(2) 點
為線段
上一點,求直線
與平面
所成角的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
(.(9分)如圖所示三棱錐
P—ABC中,異面直線
PA與
BC所成的角為
,二面角
P—
BC—
A為
,△
PBC和△
ABC的面積分別為16和10,
BC=4. 求:
(1)
PA的長;(2)三棱錐
P—ABC的體積
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知三棱柱ABC﹣A
1B
1C
1中,AA
1⊥平面ABC,AB=BC,∠ABC=90°,D為AC中點.
(1)求證:BD⊥AC
1 ;
(2)若AB=
,AA
1=
,求AC
1與平面ABC所成的角.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
把正方形ABCD沿對角線AC折起,當A、B C、D四點為頂點的三棱錐體積最大時,直線BD與平面ABC所成的角的大小為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
把邊長為
的正方形
沿對角線
折成直二面角,折成直二面角后,在
四點所在的球面上,
與
兩點之間的球面距離為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
有四根長都為2的直鐵條,若再選兩根長都為a的直鐵條,使這六根鐵條端點處相連能夠焊接成一個三棱錐形的鐵架,則a的取值范圍是
查看答案和解析>>