已知拋物線C的頂點(diǎn)為原點(diǎn),其焦點(diǎn)F(0,c)(c>0)到直線l:x-y-2=0的距離為.設(shè)P為直線l上的點(diǎn),過(guò)點(diǎn)P作拋物線C的兩條切線PA,PB,其中A,B為切點(diǎn).
(1)求拋物線C的方程;
(2)當(dāng)點(diǎn)P(x0,y0)為直線l上的定點(diǎn)時(shí),求直線AB的方程.
解 (1)依題意,設(shè)拋物線C的方程為x2=4cy,
則=,c>0,解得c=1.
所以拋物線C的方程為x2=4y.
(2)拋物線C的方程為x2=4y,
即y=x2,
求導(dǎo)得y′=x,設(shè)A(x1,y1),B(x2,y2),
則切線PA,PB的斜率分別為x1,x2,
所以切線PA的方程為y-y1=(x-x1),
即y=x-+y1,
即x1x-2y-2y1=0.
同理可得切線PB的方程為x2x-2y-2y2=0,
又點(diǎn)P(x0,y0)在切線PA和PB上,
所以x1x0-2y0-2y1=0,x2x0-2y0-2y2=0,
所以(x1,y1),(x2,y2)為方程x0x-2y0-2y=0 的兩組解,
所以直線AB的方程為x0x-2y-2y0=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓E:+=1(a>b>0)的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交E于A,B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為 ( ).
A.+=1 B.+=1
C.+=1 D.+=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系xOy中,直線3x+4y-5=0與圓x2+y2=4相交于A,B兩點(diǎn),則弦AB的長(zhǎng)等于( ).
A.3 B.2 C. D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知拋物線y2=4px(p>0)與雙曲線-=1(a>0,b>0)有相同的焦點(diǎn)F,點(diǎn)A是兩曲線的交點(diǎn),且AF⊥x軸,則雙曲線的離心率為( ).
A. B.+1 C.+1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系xOy中,經(jīng)過(guò)點(diǎn)(0,)且斜率為k的直線l與橢圓+y2=1有兩個(gè)不同的交點(diǎn)P和Q.
(1)求k的取值范圍;
(2)設(shè)橢圓與x軸正半軸、y軸正半軸的交點(diǎn)分別為A,B,是否存在常數(shù)k,使得向量+與垂直?如果存在,求k值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b>0)的離心率e= ,且橢圓C上的點(diǎn)到Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A,B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及相對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù),的最大值為2。
(Ⅰ)求函數(shù)在上的值域;
(Ⅱ)已知外接圓半徑,,角所對(duì)的邊分別是,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com