【題目】如圖5,在四棱錐P-ABCD中,PA平面ABCD,AB=4,BC=3,AD=5,DAB=ABC=90°,E是CD的中點(diǎn).

)證明:CD平面PAE;

)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P-ABCD的體積.

【答案】(1)證明略

(2)

【解析】

解法1(如圖(1)),連接AC,由AB=4,,

E是CD的中點(diǎn),所以

所以

內(nèi)的兩條相交直線,所以CD平面PAE.

)過點(diǎn)B作

由()CD平面PAE知,BG平面PAE.于是為直線PB與平面PAE

所成的角,且.

知,為直線與平面所成的角.

由題意,知

因?yàn)?/span>所以

所以四邊形是平行四邊形,故于是

中,所以

于是又梯形的面積為所以四棱錐的體積為

解法2:如圖(2),以A為坐標(biāo)原點(diǎn),所在直線分別為建立空間直角坐標(biāo)系.設(shè)則相關(guān)的各點(diǎn)坐標(biāo)為:

)易知因?yàn)?/span>

所以是平面內(nèi)的兩條相交直線,所以

()由題設(shè)和()知,分別是的法向量,而PB與

所成的角和PB與所成的角相等,所以

由()知,

解得.又梯形ABCD的面積為,所以四棱錐的體積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,側(cè)棱垂直于底面, 分別是的中點(diǎn).

1)求證: 平面平面;

2)求證: 平面;

3)求三棱錐體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出結(jié)論:x+ ≥n+1(n∈N*),則a=(
A.2n
B.3n
C.n2
D.nn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是秦九韶算法的一個(gè)程序框圖,則輸出的S為(
A.a1+x0(a3+x0(a0+a2x0))的值
B.a3+x0(a2+x0(a1+a0x0))的值
C.a0+x0(a1+x0(a2+a3x0))的值
D.a2+x0(a0+x0(a3+a1x0))的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐S-ABC中,△ABC是邊長為6的正三角形,SA=SB=SC=15,平面DEFH分別與AB,BC,SC,SA交于點(diǎn)D,E,F(xiàn),H.且D,E分別是AB,BC的中點(diǎn),如果直線SB∥平面DEFH,那么四邊形DEFH的面積為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.
(1)求證:AD⊥PB;
(2)已知點(diǎn)M是線段PC上,MC=λPM,且PA∥平面MQB,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列三種說法:

①命題p:x0∈R,tan x0=1,命題q:x∈R,x2-x+1>0,則命題“p∧()”是假命題.

②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是=-3.

③命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”.

其中所有正確說法的序號(hào)為________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲,乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,其質(zhì)量按測(cè)試指標(biāo)劃分:指標(biāo)大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機(jī)抽取這兩臺(tái)車床生產(chǎn)的零件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試指標(biāo)

機(jī)床甲

8

12

40

32

8

機(jī)床乙

7

18

40

29

6

(1)試分別估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為優(yōu)品的概率;

(2)甲機(jī)床生產(chǎn)一件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元;假設(shè)甲機(jī)床某天生產(chǎn)50件零件,請(qǐng)估計(jì)甲機(jī)床該天的日利潤(單位:元);

(3)從甲、乙機(jī)床生產(chǎn)的零件指標(biāo)在內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任選2件進(jìn)行質(zhì)量分析,求這2件都是乙機(jī)床生產(chǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方體AC1中,AD=AB=2,AA1=1,E為D1C1的中點(diǎn),如圖所示.

(Ⅰ)在所給圖中畫出平面ABD1與平面B1EC的交線(不必說明理由);
(Ⅱ)證明:BD1∥平面B1EC;
(Ⅲ)求平面ABD1與平面B1EC所成銳二面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案