【題目】如圖5,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點(diǎn).
(Ⅰ)證明:CD⊥平面PAE;
(Ⅱ)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P-ABCD的體積.
【答案】(1)證明略
(2)
【解析】
解法1(Ⅰ如圖(1)),連接AC,由AB=4,,
E是CD的中點(diǎn),所以
所以
而內(nèi)的兩條相交直線,所以CD⊥平面PAE.
(Ⅱ)過點(diǎn)B作
由(Ⅰ)CD⊥平面PAE知,BG⊥平面PAE.于是為直線PB與平面PAE
所成的角,且.
由知,為直線與平面所成的角.
由題意,知
因?yàn)?/span>所以
由所以四邊形是平行四邊形,故于是
在中,所以
于是又梯形的面積為所以四棱錐的體積為
解法2:如圖(2),以A為坐標(biāo)原點(diǎn),所在直線分別為建立空間直角坐標(biāo)系.設(shè)則相關(guān)的各點(diǎn)坐標(biāo)為:
(Ⅰ)易知因?yàn)?/span>
所以而是平面內(nèi)的兩條相交直線,所以
(Ⅱ)由題設(shè)和(Ⅰ)知,分別是,的法向量,而PB與
所成的角和PB與所成的角相等,所以
由(Ⅰ)知,由故
解得.又梯形ABCD的面積為,所以四棱錐的體積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,側(cè)棱垂直于底面, 分別是的中點(diǎn).
(1)求證: 平面平面;
(2)求證: 平面;
(3)求三棱錐體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出結(jié)論:x+ ≥n+1(n∈N*),則a=( )
A.2n
B.3n
C.n2
D.nn
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是秦九韶算法的一個(gè)程序框圖,則輸出的S為( )
A.a1+x0(a3+x0(a0+a2x0))的值
B.a3+x0(a2+x0(a1+a0x0))的值
C.a0+x0(a1+x0(a2+a3x0))的值
D.a2+x0(a0+x0(a3+a1x0))的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐S-ABC中,△ABC是邊長為6的正三角形,SA=SB=SC=15,平面DEFH分別與AB,BC,SC,SA交于點(diǎn)D,E,F(xiàn),H.且D,E分別是AB,BC的中點(diǎn),如果直線SB∥平面DEFH,那么四邊形DEFH的面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.
(1)求證:AD⊥PB;
(2)已知點(diǎn)M是線段PC上,MC=λPM,且PA∥平面MQB,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列三種說法:
①命題p:x0∈R,tan x0=1,命題q:x∈R,x2-x+1>0,則命題“p∧()”是假命題.
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是=-3.
③命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”.
其中所有正確說法的序號(hào)為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,其質(zhì)量按測(cè)試指標(biāo)劃分:指標(biāo)大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機(jī)抽取這兩臺(tái)車床生產(chǎn)的零件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo) | |||||
機(jī)床甲 | 8 | 12 | 40 | 32 | 8 |
機(jī)床乙 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為優(yōu)品的概率;
(2)甲機(jī)床生產(chǎn)一件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元;假設(shè)甲機(jī)床某天生產(chǎn)50件零件,請(qǐng)估計(jì)甲機(jī)床該天的日利潤(單位:元);
(3)從甲、乙機(jī)床生產(chǎn)的零件指標(biāo)在內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任選2件進(jìn)行質(zhì)量分析,求這2件都是乙機(jī)床生產(chǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長方體AC1中,AD=AB=2,AA1=1,E為D1C1的中點(diǎn),如圖所示.
(Ⅰ)在所給圖中畫出平面ABD1與平面B1EC的交線(不必說明理由);
(Ⅱ)證明:BD1∥平面B1EC;
(Ⅲ)求平面ABD1與平面B1EC所成銳二面角的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com