【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機從中抽取了名選手進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級人數(shù)的條形圖.

(1)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為選手成績“優(yōu)秀”與文化程度有關(guān)?

優(yōu)秀

合格

合計

大學(xué)組

中學(xué)組

合計

注:,其中.

(2)若參賽選手共萬人,用頻率估計概率,試估計其中優(yōu)秀等級的選手人數(shù);

【答案】(1)見解析;(2)萬人.

【解析】分析:(1)根據(jù)二聯(lián)表計算并且與比較大小即可.

(2)計算樣本中的優(yōu)秀率即可估算優(yōu)秀等級的人數(shù).

詳解:(1)由條形圖可知列聯(lián)表如下:

優(yōu)秀

合格

合計

大學(xué)組

中學(xué)組

合計

,

∴沒有的把握認(rèn)為優(yōu)秀與文化程度有關(guān).

(2)由條形圖知,所抽取的人中,優(yōu)秀等級有人,故優(yōu)秀率為.

∴所有參賽選手中優(yōu)秀等級人數(shù)約為萬人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點是直線上的動點,定點 的中點,動點滿足.

(1)求點的軌跡的方程

(2)過點的直線交軌跡兩點,上任意一點,直線兩點,以為直徑的圓是否過軸上的定點? 若過定點,求出定點的坐標(biāo);若不過定點,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若是函數(shù)的極值點,求的值及函數(shù)的極值;

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一種藥在病人血液中的含量不低于2克時,它才能起到有效治療的作用,已知每服用克的藥劑,藥劑在血液中的含量隨著時間小時變化的函數(shù)關(guān)系式近似為,其中

若病人一次服用9克的藥劑,則有效治療時間可達多少小時?

若病人第一次服用6克的藥劑,6個小時后再服用3m克的藥劑,要使接下來的2小時中能夠持續(xù)有效治療,試求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),以為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于兩點.

(Ⅰ)求直線的普通方程及曲線的直角坐標(biāo)方程;

(Ⅱ)把直線軸的交點記為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱ABC-A1B1C1,DAC中點,且直線AB1與平面BCC1B1所成的角為300,則異面直線AB1BD所成角的大小為 ( )

A. 300

B. 450

C. 600

D. 900

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a為實數(shù),函數(shù)f(x)=x2﹣|x2﹣ax﹣2|在區(qū)間(﹣∞,﹣1)和(2,+∞)上單調(diào)遞增,則a的取值范圍為(
A.[1,8]
B.[3,8]
C.[1,3]
D.[﹣1,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)的導(dǎo)函數(shù),討論的零點個數(shù);

(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案