【題目】已知函數(shù)().
(1)為的導(dǎo)函數(shù),討論的零點個數(shù);
(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
【答案】(1)見解析(2)
【解析】分析:(1)先對原函數(shù)求導(dǎo),從而判斷單調(diào)性,再分類討論即可得到的零點個數(shù);
(2)設(shè),求的最值,再轉(zhuǎn)化為在上恒成立,求其最值,即可使其小于或等于零構(gòu)造不等式即可.
詳解:(1),,
,,且當(dāng)時,,,所以;
當(dāng)時,,,所以.
于是在遞減,在遞增,故,
所以①時,因為,所以無零點;
②時,,有唯一零點;
③時,,
取,,則,,
于是在和內(nèi)各有一個零點,從而有兩個零點.
(2)令,,
,,
.
①當(dāng)時,由(1)知,,所以在上遞增,知,則在上遞增,所以,符合題意;
②當(dāng)時,據(jù)(1)知在上遞增且存在零點,當(dāng)時,所以在上遞減,又,所以在上遞減,則,不符合題意.
綜上,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機從中抽取了名選手進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級人數(shù)的條形圖.
(1)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認為選手成績“優(yōu)秀”與文化程度有關(guān)?
優(yōu)秀 | 合格 | 合計 | |
大學(xué)組 | |||
中學(xué)組 | |||
合計 |
注:,其中.
(2)若參賽選手共萬人,用頻率估計概率,試估計其中優(yōu)秀等級的選手人數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》由如下問題:“今有金箠,長五尺,斬本一尺,重四斤.?dāng)啬┮怀,重二斤.問次一尺各重幾何?”意思是:“現(xiàn)有一根金杖,長5尺,一頭粗,一頭細,在粗的一端截下1尺,重4斤;在細的一端截下1尺,重2斤;問依次每一尺各重多少斤?”設(shè)該金杖由粗到細是均勻變化的,其重量為,現(xiàn)將該金杖截成長度相等的10段,記第段的重量為,且,若,則( )
A. 6 B. 5 C. 4 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:x﹣y=1與圓Γ:x2+y2﹣2x+2y﹣1=0相交于A,C兩點,點B,D分別在圓Γ上運動,且位于直線l的兩側(cè),則四邊形ABCD面積的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1) 試估計這組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù);
(2)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:
A:所有芒果以元/千克收購;
B:對質(zhì)量低于克的芒果以元/個收購,高于或等于克的以元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市某機構(gòu)調(diào)查小學(xué)生課業(yè)負擔(dān)的情況,設(shè)平均每人每天做作業(yè)時間為X(單位:分鐘),按時間分下列四種情況統(tǒng)計:①0~30分鐘;②30~60分鐘;③60~90分鐘;④90分鐘以上,有1000名小學(xué)生參加了此項調(diào)查,如圖是此次調(diào)查中某一項的程序框圖,其輸出的結(jié)果是600,則平均每天做作業(yè)時間在0~60分鐘內(nèi)的學(xué)生的頻率是( )
A. 0.20B. 0.80C. 0.60D. 0.40
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個四面體的三視圖,則該四面體的表面積為( )
A.8+8 +4
B.8+8 +2
C.2+2 +
D. + +
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知⊙O:x2+y2=6,P為⊙O上動點,過P作PM⊥x軸于M,N為PM上一點,且 . (Ⅰ)求點N的軌跡C的方程;
(Ⅱ)若A(2,1),B(3,0),過B的直線與曲線C相交于D、E兩點,則kAD+kAE是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com