【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過、、三點(diǎn).
(1)求橢圓的方程;
(2)若直線:()與橢圓交于、兩點(diǎn),證明直線與直線的交點(diǎn)在直線上.
【答案】(1);(2)詳見解析.
【解析】
試題(1)當(dāng)焦點(diǎn)不確定在哪個軸時,可以分別討論在軸時,,代入點(diǎn),當(dāng)在軸時,代入點(diǎn)解或,成立的就是橢圓方程;或直接設(shè)橢圓的一般式,代入三點(diǎn)的坐標(biāo)解方程組;
(2)直線方程與橢圓方程聯(lián)立,設(shè),,由根與系數(shù)的關(guān)系得到和設(shè)直線的方程,直線的方程為后有三種方法,法一,當(dāng)時計算交點(diǎn)的縱坐標(biāo),并根據(jù)直線方程與根與系數(shù)的關(guān)系證明縱坐標(biāo)相等,法二是聯(lián)立直線與的方程,消去后利用根與系數(shù)的關(guān)系得到交點(diǎn)的橫坐標(biāo)等于4,法三類似于法二,只是先通過根與系數(shù)的關(guān)系先消去,得到與的關(guān)系,然后再聯(lián)立兩個方程得到交點(diǎn)橫坐標(biāo)為4.
試題解析:(1)解法一:當(dāng)橢圓E的焦點(diǎn)在x軸上時,設(shè)其方程為(),
則,又點(diǎn)在橢圓上,得.解得.
∴橢圓的方程為.
當(dāng)橢圓E的焦點(diǎn)在y軸上時,設(shè)其方程為(),
則,又點(diǎn)在橢圓上,得.
解得,這與矛盾.
綜上可知,橢圓的方程為.
解法二:設(shè)橢圓方程為(),
將、、代入橢圓的方程,得
解得,.
∴橢圓的方程為.
(2)證法一:將直線:代入橢圓的方程并整理,得,
設(shè)直線與橢圓的交點(diǎn),,
由根與系數(shù)的關(guān)系,得,.
直線的方程為:,它與直線的交點(diǎn)坐標(biāo)為,
同理可求得直線與直線的交點(diǎn)坐標(biāo)為.
下面證明、兩點(diǎn)重合,即證明、兩點(diǎn)的縱坐標(biāo)相等:
∵,,
∴
.
因此結(jié)論成立.
綜上可知,直線與直線的交點(diǎn)在直線上.
證法二:將直線:,代入橢圓的方程并整理,
得,
設(shè)直線與橢圓的交點(diǎn),,
由根與系數(shù)的關(guān)系,得,.
直線的方程為:,即.
直線的方程為:,即.
由直線與直線的方程消去,得
.
∴直線與直線的交點(diǎn)在直線上.
證法三:將直線:,代入橢圓方程并整理,
得,
設(shè)直線與橢圓的交點(diǎn),,
由根與系數(shù)的關(guān)系,得,.
消去得,.
直線的方程為:,即.
直線的方程為:,即.
由直線與直線的方程消去得,
.
∴直線與直線的交點(diǎn)在直線上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)當(dāng)a=b=1時,求函數(shù)f(x)的圖象在點(diǎn)(e2,f(e2))處的切線方程;
(2)當(dāng)b=1時,若存在,使f(x1)≤f'(x2)+a成立,求實數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:,O為坐標(biāo)原點(diǎn),F為C的右焦點(diǎn),過F的直線與C的兩條漸近線的交點(diǎn)分別為M、N.若OMN為直角三角形,則|MN|=
A. B. 3 C. D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線C:y2=8x的焦點(diǎn)且斜率為k的直線與C交于A、B兩點(diǎn),若以AB為直徑的圓過點(diǎn)M(﹣2,2),則k=( 。
A.B.C.D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)界的震動.在1859年,德國數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想.在此之前,著名數(shù)學(xué)家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結(jié)論.若根據(jù)歐拉得出的結(jié)論,估計10000以內(nèi)的素數(shù)的個數(shù)為(素數(shù)即質(zhì)數(shù),,計算結(jié)果取整數(shù))
A. 1089 B. 1086 C. 434 D. 145
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,點(diǎn)在上,且,,現(xiàn)將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且與平面所成的角為,
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式組表示的區(qū)域為A,不等式組表示的區(qū)域為B.
(1)在區(qū)域A中任取一點(diǎn)(x,y),求點(diǎn)(x,y)∈B的概率;
(2)若x、y分別表示甲、乙兩人各擲一次骰子所得的點(diǎn)數(shù),求點(diǎn)(x,y)在區(qū)域B中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,,過點(diǎn)的直線分別與直線,交于,其中點(diǎn)在第三象限,點(diǎn)在第二象限,點(diǎn);
(1)若的面積為,求直線的方程;
(2)直線交于點(diǎn),直線交于點(diǎn),若直線的斜率均存在,分別設(shè)為,判斷是否為定值?若為定值,求出該定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非零數(shù)列的遞推公式為,.
(1)求證數(shù)列是等比數(shù)列;
(2)若關(guān)于的不等式有解,求整數(shù)的最小值;
(3)在數(shù)列中,是否一定存在首項、第項、第項,使得這三項依次成等差數(shù)列?若存在,請指出所滿足的條件;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com