【題目】設(shè)不等式組表示的區(qū)域?yàn)?/span>A,不等式組表示的區(qū)域?yàn)?/span>B

1)在區(qū)域A中任取一點(diǎn)(xy),求點(diǎn)(x,y)∈B的概率;

2)若x、y分別表示甲、乙兩人各擲一次骰子所得的點(diǎn)數(shù),求點(diǎn)(x,y)在區(qū)域B中的概率.

【答案】(1)(2)

【解析】

(1)依題意可知是幾何概型,利用面積比可求得答案;

(2)依題意可知是古典概型,利用古典概型的概率公式可求得答案.

1)設(shè)集合A中的點(diǎn)(x,y)∈B為事件M,區(qū)域A的面積為S136,區(qū)域B的面積為S218,∴PM,

2)設(shè)點(diǎn)(x,y)在區(qū)域B為事件N,甲、乙兩人各擲一次骰子所得的點(diǎn)(x,y)有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共36個(gè),其中在區(qū)域B中的點(diǎn)(x,y)有(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共21個(gè),故PN

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PCD⊥平面ABCD,AB=2BC=1,,EPB中點(diǎn).利用空間向量方法完成以下問(wèn)題:

1)求二面角E-AC-D的余弦值;

2)在棱PD上是否存在點(diǎn)M,使得?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)根據(jù)學(xué)生的興趣愛(ài)好,分別創(chuàng)建了“書(shū)法”、“詩(shī)詞”、“理學(xué)”三個(gè)社團(tuán),據(jù)資料統(tǒng)計(jì)新生通過(guò)考核選拔進(jìn)入這三個(gè)社團(tuán)成功與否相互獨(dú)立.2015年某新生入學(xué),假設(shè)他通過(guò)考核選拔進(jìn)入該校的“書(shū)法”、“詩(shī)詞”、“理學(xué)”三個(gè)社團(tuán)的概率依次為、、,己知三個(gè)社團(tuán)他都能進(jìn)入的概率為,至少進(jìn)入一個(gè)社團(tuán)的概率為,且.

(1)求的值;

(2)該校根據(jù)三個(gè)社團(tuán)活動(dòng)安排情況,對(duì)進(jìn)入“書(shū)法”社的同學(xué)增加校本選修學(xué)分1分,對(duì)進(jìn)入“詩(shī)詞”社的同學(xué)增加校本選修學(xué)分2分,對(duì)進(jìn)入“理學(xué)”社的同學(xué)增加校本選修學(xué)分3分.求該新同學(xué)在社團(tuán)方面獲得校本選修課學(xué)分分?jǐn)?shù)不低于4分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過(guò)、、三點(diǎn).

1)求橢圓的方程;

2)若直線)與橢圓交于、兩點(diǎn),證明直線與直線的交點(diǎn)在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】與正方體ABCD—A1B1C1D1的三條棱AB、CC1、A1D1所在直線的距離相等的點(diǎn)( )

A.有且只有1個(gè)B.有且只有2個(gè)

C.有且只有3個(gè)D.有無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為.

(1)求直線的直角坐標(biāo)方程與曲線的普通方程;

(2)若是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn).求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C:x2+y2+4x-2y+m=0與直線相切.

(1)求圓C的方程;

(2)若圓C上有兩點(diǎn)M,N關(guān)于直線x+2y=0對(duì)稱,且,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

(1)若曲線在點(diǎn)處的切線與軸平行,求;

(2)當(dāng)時(shí),函數(shù)的圖象恒在軸上方,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書(shū)作序時(shí),介紹了勾股圓方圖,亦稱趙爽弦圖(以弦為邊長(zhǎng)得到的正方形由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的),類比趙爽弦圖,可類似地構(gòu)造如圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形,設(shè),則(

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案