6.一個幾何體的某一方向的視圖是圓,則它不可能是( 。
A.球體B.圓錐C.圓柱D.長方體

分析 由三視圖的定義對四個選項依次驗證,檢驗其是否符合題目要求,即可選取正確選項.

解答 解:對于選項A,球的三個視圖都是圓,故此幾何體可以是球,A不是正確選項;
對于選項B,圓柱的俯視圖是圓,故B不是正確選項;
對于選項C,圓錐的俯視圖是圓,故C不是正確選項;
對于選項D,長方體的三個視圖都是矩形,其俯視圖不可能是圓,故D為正確選項
故選D.

點評 本題考點是簡單空間圖形的三視圖,考查根據(jù)作三視圖的規(guī)則來作出三個視圖的能力,三視圖的投影規(guī)則是:“主視、俯視 長對正;主視、左視高平齊,左視、俯視 寬相等”.三視圖是高考的新增考點,不時出現(xiàn)在高考試題中,應(yīng)予以重視.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

運行下面的程序,若,則輸出的等于( )

A.9 B.7 C.13 D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E為PD的中點

(1)求異面直線PA與CE所成角的大小;
(2)求三棱錐A-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,E為AD上一點,面PAD⊥面ABCD,四邊形
BCDE為矩形∠PAD=60°,PB=2$\sqrt{3}$,PA=ED=2AE=2.
(Ⅰ)求證:CB⊥面PEB
(Ⅱ) 已知$\overrightarrow{PF}=λ\overrightarrow{PC}({λ∈R})$,且PA∥面BEF,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C1,拋物線C2的焦點均在x軸上,從兩條曲線上各取兩個點,將其坐標(biāo)混合記錄于如表中:
x-22$\sqrt{6}$9
y$\sqrt{2}$-$\sqrt{2}$-13
(1)求橢圓C1和拋物線C2的標(biāo)準(zhǔn)方程.
(2)過橢圓C1右焦點F的直線l與此橢圓相交于A,B兩點,若點P為直線x=4上任意一點,
①試證:直線PA,PF,PB的斜率成等差數(shù)列.
②若點P在X軸上,設(shè)$\overrightarrow{FA}$=λ$\overrightarrow{FB}$,λ∈[-2,-1],求|$\overrightarrow{PA}$+$\overrightarrow{PB}$|取最大值時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在五棱錐P-ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2$\sqrt{2}$,BC=2AE=4,三角形PAB是等腰三角形.
(1)求證:平面PCD⊥平面PAC;
(2)求直線PB與平面PCD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定積分${∫}_{0}^{π}$|sinx-cosx|dx的值是( 。
A.2+$\sqrt{2}$B.2-$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在直三棱柱ABC-A1B1C1中,AB⊥AC,AA1=AC=2AB,M是CC1的中點,N是棱AC上的點,且$\overrightarrow{{A_1}N}⊥\overrightarrow{BM},|{\overrightarrow{{A_1}N}}|=2\sqrt{5}$,求三棱錐A1-ABN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知三次函數(shù)f(x)=ax3+x-b(a>0)在區(qū)間(0,1]內(nèi)有零點,且f′(1)≤4,則f(-2)的取值范圍是(  )
A.(-10,-6)B.[-12,-2)C.[-12,-6)D.[-12,-10)

查看答案和解析>>

同步練習(xí)冊答案