分析 以A為原點(diǎn)建立坐標(biāo)系,設(shè)AB=a,AN=b,求出$\overrightarrow{{A}_{1}N}$和$\overrightarrow{BM}$的坐標(biāo),列出方程組求出a,b的值,代入棱錐的體積公式計(jì)算.
解答 解:以A為原點(diǎn),以AC,AB,AA1所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系A(chǔ)-xyz,
設(shè)AB=a,AN=b,則A1(0,0,2a),B(0,a,0),N(b,0,0),M(2a,0,a),
∴$\overrightarrow{{A}_{1}N}$=(b,0,-2a),$\overrightarrow{BM}$=(2a,-a,a),
∵$\overrightarrow{{A_1}N}⊥\overrightarrow{BM},|{\overrightarrow{{A_1}N}}|=2\sqrt{5}$,
∴$\left\{\begin{array}{l}{2ab-2{a}^{2}=0}\\{^{2}+4{a}^{2}=20}\end{array}\right.$,解得a=b=2,
∴V${\;}_{{A}_{1}-ABN}$=$\frac{1}{3}{S}_{△ABN}•A{A}_{1}$=$\frac{1}{3}×\frac{1}{2}×2×2×4$=$\frac{8}{3}$.
點(diǎn)評(píng) 本題考查了棱錐的體積計(jì)算,空間向量在立體幾何中的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
流量(x) | 0≤x<5 | 5≤x<10 | 10≤x<15 | 15≤x<20 | 20≤x<25 | x≥25 |
頻率 | 0.05 | 0.25 | 0.30 | 0.25 | 0.15 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6+12$\sqrt{2}$ | B. | 16+12$\sqrt{2}$ | C. | 6+12$\sqrt{3}$ | D. | 16+12$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{3}$+4 | B. | 4$\sqrt{3}$ | C. | 8 | D. | 2$\sqrt{3}$+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年安徽六安一中高一上國(guó)慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè),,,,.
(1)求;
(2)設(shè),且中有且僅有2個(gè)元素屬于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若θ=90°,則直線PB與平面BCD所成角大小為45° | |
B. | 若直線PB與平面BCD所成角大小為45°,則θ=90° | |
C. | 若θ=60°,則直線BD與PC所成角大小為90° | |
D. | 若直線BD與PC所成角大小為90°,則θ=60° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com