已知函數(shù)f(x)=-x+log2
1-x
1+x
+1,則f(
1
2
)+f(-
1
2
)的值為(  )
A、2
B、-2
C、0
D、2log2
1
3
考點:對數(shù)的運算性質(zhì),函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得f(
1
2
)+f(-
1
2
)=(-
1
2
+log2
1-
1
2
1+
1
2
+1)+(
1
2
+log2
1+
1
2
1-
1
2
+1),由此能求出結(jié)果.
解答: 解:∵函數(shù)f(x)=-x+log2
1-x
1+x
+1,
∴f(
1
2
)+f(-
1
2

=(-
1
2
+log2
1-
1
2
1+
1
2
+1)+(
1
2
+log2
1+
1
2
1-
1
2
+1)
=2.
故選:A.
點評:本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要注意對數(shù)性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若函數(shù):s=
3t2+2(0≤t≤3)
29+3(t-3)2(t≥3)
<0,則函數(shù)在t=1的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,已知4sin2
A-B
2
+4sinAsinB=3,AC=8,點D在BC邊上,且BD=2,cos∠ADB=
1
7
.求角C的大小及邊AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinωx,cosωx),
b
=(cosωx,
3
cosωx),(ω>0),函數(shù)f(x)=
a
b
-
3
2
的最小正周期為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)如果△ABC的三邊a、b、c所對的角分別為A,B,C,且滿足b2+c2=a2-
3
bc,求f(A)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2+2,x>0
cosx+1,x≤0
,則下列結(jié)論正確的是( 。
A、f(x)是偶函數(shù)
B、f(x)是增函數(shù)
C、f(x)是周期函數(shù)
D、f(x)的值域為[0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“?x>0,x+1>
x
”的否定是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角三角形ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2b•sinA=
3
a.
(1)求角B的大小;
(2)若a=4,S=5
3
,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x+1
+lg(x-1)的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,下面四個等式中不正確的是( 。
A、cos(A+B)=-cosC
B、sin2(A+B)=sin2C
C、tan
A+B
2
=cot
C
2
D、cos3(A+B)=1-2cos2 
3C
2

查看答案和解析>>

同步練習冊答案