【題目】已知函數(shù)f(x)= ﹣k( +lnx),若x=2是函數(shù)f(x)的唯一一個(gè)極值點(diǎn),則實(shí)數(shù)k的取值范圍為(
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)

【答案】C
【解析】解:∵函數(shù)f(x)= ﹣k( +lnx),

∴函數(shù)f(x)的定義域是(0,+∞)

∴f′(x)= ﹣k(﹣ + )=

∵x=2是函數(shù)f(x)的唯一一個(gè)極值點(diǎn)

∴x=2是導(dǎo)函數(shù)f′(x)=0的唯一根.

∴ex﹣kx=0在(0,+∞)無(wú)變號(hào)零點(diǎn),

令g(x)=ex﹣kx

g′(x)=ex﹣k

①k≤0時(shí),g′(x)>0恒成立.g(x)在(0,+∞)時(shí)單調(diào)遞增的

g(x)的最小值為g(0)=1,g(x)=0無(wú)解

②k>0時(shí),g′(x)=0有解為:x=lnk

0<x<lnk時(shí),g′(x)<0,g(x)單調(diào)遞減

lnk<x時(shí),g′(x)>0,g(x)單調(diào)遞增

∴g(x)的最小值為g(lnk)=k﹣klnk

∴k﹣klnk>0

∴k<e,

由y=ex和y=ex圖象,它們切于(1,e),

綜上所述,k≤e.

故選C.

由f(x)的導(dǎo)函數(shù)形式可以看出,需要對(duì)k進(jìn)行分類(lèi)討論來(lái)確定導(dǎo)函數(shù)為0時(shí)的根.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,側(cè)面底面,側(cè)棱,底面為直角梯形,其中中點(diǎn).

1)求證 平面;

2)求異面直線所成角的余弦值;

3)線段上是否存在,使得它到平面的距離為?若存在,求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣4x,g(x)=﹣x2﹣3. (Ⅰ)求函數(shù)f(x)在x=1處的切線方程;
(Ⅱ)若存在x0∈[e,e2],使得f(x0)<g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四面體P﹣ABCD中,△ABD是邊長(zhǎng)為2的正三角形,PC⊥底面ABCD,AB⊥BP,BC=
(1)求證:PA⊥BD;
(2)已知E是PA上一點(diǎn),且BE∥平面PCD.若PC=2,求點(diǎn)E到平面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),f(x)=2018x+log2018x,則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與直線,其中為常數(shù).

1,求的值;

2若點(diǎn)上,直線過(guò)點(diǎn),且在兩坐標(biāo)軸上的截距之和為0,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱 , , , 分別為 , 的中點(diǎn).

1)求證: 平面

2)求異面直線 所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于空間兩不同的直線,兩不同的平面,有下列推理:

(1), (2),(3)

(4), (5)

其中推理正確的序號(hào)為( )

A. (1)(3)(4) B. (2)(3)(5) C. (4)(5) D. (2)(3)(4)(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, .

(1)當(dāng)時(shí),求函數(shù)上的最大值;

(2)對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案