解答:
解:(1)∵函數(shù)f(x)=[x[x]],
∴f(3.6)=[3.6[3.6]]=[3.6×3]=[10.8]=10.
(2)∵函數(shù)f(x)的定義域是[0,n),n∈N
+,
∴當(dāng)0≤x<1時(shí),[x]=0,f(x)=[x[x]]=[x×0]=[0]=0,函數(shù)值有1個(gè),
當(dāng)1≤x<2時(shí),[x]=1,f(x)=[x[x]]=[x×1]=[x]=1,函數(shù)值有1個(gè),
當(dāng)2≤x<3時(shí),4≤2x<6
[x]=2,f(x)=[x[x]]=[x×2]=[2x],能取到4,5,函數(shù)值有2個(gè),
當(dāng)3≤x<4時(shí),9≤3x<12,
[x]=3,f(x)=[x[x]]=[x×3]=[3x],能取到9,10,11,函數(shù)值有3個(gè),
當(dāng)4≤x<5時(shí),16≤4x<20,
[x]=4,f(x)=[x[x]]=[x×4]=[4x],能取到16,17,18,19,函數(shù)值有4個(gè),
…
當(dāng)n-1≤x<n時(shí),(n-1)
2≤(n-1)x<n(n-1),
[x]=n-1,f(x)=[x[x]]=[x×(n-1)]=[(n-1)x],能取到(n-1)
2,(n-1)
2+1,(n-1)
2+2,…,n(n-1)-1,函數(shù)值有n-1個(gè),
∴值域中元素個(gè)數(shù)為:1+1+2+3+…+(n-1)=
.
故答案為:
.