(2008•河西區(qū)三模)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=
9
8
an-
1
8
3n+1+
3
8
(n∈N*)

(1)求首項(xiàng)a1與通項(xiàng)an
(2)設(shè)Tn=
3n
Sn
,求
lim
n→∞
(T1+T2+T3+…+Tn).
分析:(1)令n=1可求得a1,由已知可得Sn=
9
8
(Sn-Sn-1)
-
1
8
3n+1+
3
8
,整理可得Sn+
1
2
3n+1-
3
8
=9(Sn-1+
1
2
3n-
3
8
)
①,則Sn+1+
1
2
3n+2-
3
8
=9(Sn+
1
2
3n+1-
3
8
)
②,兩式相減得an+1+3n+1=9(an+3n),由此可判斷{an+3n}是首項(xiàng)為9,公比為9的等比數(shù)列,可求an+3n,于是得到an;
(2)由(1)可求得Sn=
9
8
(9n-3n)-
1
8
3n+1+
3
8
,代入得Tn,進(jìn)行化簡(jiǎn)變形拆項(xiàng),利用裂項(xiàng)相消法可求得T1+T2+T3+…+Tn,然后取極限即可;
解答:解:(1)由a1=
9
8
a1-
1
8
32+
3
8
,得a1=6,
由Sn-Sn-1=an(n=2,3,…),代入得Sn=
9
8
(Sn-Sn-1)
-
1
8
3n+1+
3
8

1
8
Sn=
9
8
sn-1+
1
8
3n+1-
3
8
,
Sn=9Sn-1+3n+1-3,
于是Sn+
1
2
3n+1-
3
8
=9(Sn-1+
1
2
3n-
3
8
)
①,
{Sn+
1
2
3n+1-
3
8
}
是等比數(shù)列,
Sn+1+
1
2
3n+2-
3
8
=9(Sn+
1
2
3n+1-
3
8
)
②,
②-①得an+1+3n+1=9(an+3n),
∴{an+3n}是首項(xiàng)為9,公比為9的等比數(shù)列,
an+3n=9•9n-1=9n,
an=9n-3n(n∈N*);
(2)由(1)可求得Sn=
9
8
(9n-3n)-
1
8
3n+1+
3
8
,
所以Tn=
3n
Sn
=
3n
9
8
(9n-3n)-
1
8
3n+1+
3
8
=
8
9
3n
9n-3n-3n-1+
1
3

=
8
9
3n
9n-
4
3
3n+
1
3
=
8
3
3n
3•9n-4•3n+1
=
8
3
3n
(3n-1)•(3•3n-1)

=
8
3
3n
(3n-1)(3n+1-1)
=
8
3
1
2
•(
1
3n-1
-
1
3n+1-1
)=
4
3
(
1
3n-1
-
1
3n+1-1
)

lim
n→∞
(T1+T2+…+Tn)
=
lim
n→∞
[
4
3
•(
1
2
-
1
32-1
+
1
32-1
-
1
33-1
+…-
1
3n+1-1
)]=
2
3
點(diǎn)評(píng):本題考查由遞推式求通項(xiàng)即裂項(xiàng)相消法對(duì)數(shù)列求和,考查數(shù)列極限的求法,運(yùn)算量較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•河西區(qū)三模)不等式(x-2)
x+1
≥0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•河西區(qū)三模)把函數(shù)y=2x的圖象按向量
a
=(2,-3)
平移,得到y(tǒng)=f(x)的圖象,則f(x)的表達(dá)式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•河西區(qū)三模)設(shè)a,b是非零實(shí)數(shù),若a<b,則下列不等式成立的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•河西區(qū)三模)設(shè)x,y滿足不等式組
x-4y+16≥0
5x-y-15≤0
4x+3y-12≥0
,則
x2+y2
的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•河西區(qū)三模)以雙曲線
x2
9
-
y2
16
=1
的右焦點(diǎn)為圓心,且與直線x+1=0相切的圓的方程是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案