6.已知函數(shù)$f(x)=\sqrt{-3{x^2}+ax}-\frac{a}{x}$(a>0).若存在x0,使得f(x0)≥0成立,則a的最小值為12$\sqrt{3}$.

分析 若存在x0,使得f(x0)≥0成立,則函數(shù)$f(x)=\sqrt{-3{x^2}+ax}-\frac{a}{x}$(a>0)的最大值大于等于0,進(jìn)而求得答案.

解答 解:若存在x0,使得f(x0)≥0成立,
則函數(shù)$f(x)=\sqrt{-3{x^2}+ax}-\frac{a}{x}$(a>0)的最大值大于等于0,
當(dāng)x=$\frac{a}{6}$時(shí),函數(shù)f(x)取最大值$\frac{\sqrt{3}}{6}$a-6,
故$\frac{\sqrt{3}}{6}$a-6≥0,
解得:a≥12$\sqrt{3}$,
故答案為:12$\sqrt{3}$

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了函數(shù)的最值,函數(shù)的極值,函數(shù)的零點(diǎn),函數(shù)的奇偶性等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在如圖所示的正方形中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分(曲線C為正態(tài)分布N(0,1)的密度曲線)的點(diǎn)的個(gè)數(shù)的估計(jì)值為( 。
溫馨提示:若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=68.26%,P(μ-2σ<X<μ+2σ)=95.44%
A.7614B.6587C.6359D.3413

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,且過(guò)點(diǎn)($\frac{\sqrt{3}}{2}$,$\frac{1}{4}$).
(Ⅰ)求橢圓E的方程;
(Ⅱ)已知A、B分別為橢圓E的右頂點(diǎn)、上頂點(diǎn),過(guò)原點(diǎn)O做斜率為k(k>0)的直線交橢圓于C、D兩點(diǎn),求四邊形ACBD面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知$\frac{sinα+cosα}{sinα-cosα}$=2,則sin2α-sinαcosα的值為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.將參加環(huán)保知識(shí)競(jìng)賽的學(xué)生成績(jī)整理后畫(huà)出的頻率分布直方圖如圖所示,則圖中a的值為0.028. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=lnx-a(x-1),g(x)=ex,其中e為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)a=1時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)求函數(shù)y=f(x)在區(qū)間[1,e]上的值域;
(3)若a>0,過(guò)原點(diǎn)分別作曲線y=f(x)、y=g(x)的切線l1、l2,且兩切線的斜率互為倒數(shù),求證:$\frac{e-1}{e}<a<\frac{{{e^2}-1}}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)為偶函數(shù),且f(x+2)=-f(x),當(dāng)x∈(0,1)時(shí),f(x)=($\frac{1}{2}$)x,則f($\frac{7}{2}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知圓C:(x-4)2+(y-3)2=9,若P(x,y)是圓C上一動(dòng)點(diǎn),則x的取值范圍是1≤x≤7;$\frac{y}{x}$的最大值是$\frac{24}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F,若F關(guān)于直線$\sqrt{3}$x+y=0的對(duì)稱點(diǎn)A是橢圓C上的點(diǎn),則橢圓C的離心率為( 。
A.$\sqrt{2}$-1B.$\sqrt{3}$-1C.$\sqrt{5}$-2D.$\sqrt{6}$-2

查看答案和解析>>

同步練習(xí)冊(cè)答案