對(duì)于四面體ABCD,給出下列四個(gè)命題:

①若AB=AC,BD=CD,則BC⊥AD;

②若AB=CD,AC=BD,則BC⊥AD;

③若AB⊥AC,BD⊥CD,則BC⊥AD;

④若AB⊥CD,BD⊥AC,則BC⊥AD.

其中真命題的序號(hào)是_____(寫(xiě)出所有命題的序號(hào)).

答案:略
解析:

解:對(duì)于命題①,取BC的中點(diǎn)E.如圖(1)

連結(jié)AE、DE,則BCAEBCDE,∴AED.∴BCAD.∴①正確.對(duì)于命題④,過(guò)A向平面BCD做垂線AO,如圖(2)

連結(jié)BO,延長(zhǎng)后與CD交于點(diǎn)E,連結(jié)AE,

AO⊥平面BCDCD平面BCD,

AOCD.又∵ABCD

ABAO=A,∴CD⊥平面AOE

BE平面ABE,∴CDBE

同理,連結(jié)CO,延長(zhǎng)后與BD交于點(diǎn)F,易證CFBD

O為△BCD的垂心.∴連結(jié)DO,必有DOBC

AOBC,且AODO=O,

BC⊥平面ADO.又AD平面ADO,

BCAD.∴命題④正確.

綜上可知,應(yīng)填①④.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、對(duì)于四面體ABCD,下列命題正確的序號(hào)是
①④⑤

①相對(duì)棱AB與CD所在的直線異面;
②由頂點(diǎn)A作四面體的高,其垂足是△BCD的三條高線的交點(diǎn);
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在直線異面;
④分別作三組相對(duì)棱中點(diǎn)的連線,所得的三條線段相交于一點(diǎn);
⑤最長(zhǎng)棱必有某個(gè)端點(diǎn),由它引出的另兩條棱的長(zhǎng)度之和大于最長(zhǎng)棱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、對(duì)于四面體ABCD,下列命題正確的是
①④⑤
.(寫(xiě)出所有正確命題的編號(hào)).
①相對(duì)棱AB與CD所在的直線是異面直線;
②由頂點(diǎn)A作四面體的高,其垂足是△BCD三條高線的交點(diǎn);
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高的垂足重合;
④任何三個(gè)面的面積之和都大于第四個(gè)面的面積;
⑤分別作三組相對(duì)棱中點(diǎn)的連線,所得的三條線段相交于一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、對(duì)于四面體ABCD,有如下命題
①棱AB與CD所在的直線異面;
②過(guò)點(diǎn)A作四面體ABCD的高,其垂足是△BCD的三條高線的交點(diǎn);
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在直線異面;
④分別作三組相對(duì)棱的中點(diǎn)連線,所得的三條線段相交于一點(diǎn),
其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

17、對(duì)于四面體ABCD,下列命題正確的是
①④
.(寫(xiě)出所有正確命題的編號(hào))
①相對(duì)棱AB與CD所在的直線異面
②由頂點(diǎn)A作四面體的高,其垂足必是△BCD的三條高線的交點(diǎn)
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在直線必異面
④分別作三組相對(duì)棱中點(diǎn)的連線,所得的三條線段相交于一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下五個(gè)命題中,正確命題的個(gè)數(shù)是
3
3

①不共面的四點(diǎn)中,其中任意三點(diǎn)不共線;
②若a,b,c為空間中不重合的三條直線,若a⊥c,b⊥c,則a∥b;
③對(duì)于四面體ABCD,任何三個(gè)面的面積之和都大于第四個(gè)面的面積;
④對(duì)于四面體ABCD,相對(duì)棱AB 與CD 所在的直線是異面直線;
⑤各個(gè)面都是三角形的幾何體是三棱錐.

查看答案和解析>>

同步練習(xí)冊(cè)答案