已知n是正整數(shù),數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任何正整數(shù)n,等式Sn=-an+
12
(n-3)都成立.
(I)求數(shù)列{an}的首項(xiàng)a1;
(II)求數(shù)列{an}的通項(xiàng)公式;
(III)設(shè)數(shù)列{nan}的前n項(xiàng)和為Tn,不等式2Tn≤(2n+4)Sn+3是否對(duì)一切正整數(shù)n恒成立?若不恒成立,請(qǐng)求出不成立時(shí)n的所有值;若恒成立,請(qǐng)給出證明.
分析:(I)在等式Sn=-an+
1
2
(n-3)
中,令n=1.解關(guān)于a1的方程.
(II)當(dāng)n≥2時(shí),an=Sn-Sn-1=  
1
2
an-1+
1
4
,變形轉(zhuǎn)化得出數(shù)列{an-
1
2
}是等比數(shù)列,求出{an-
1
2
}的通項(xiàng)公式,進(jìn)而求出數(shù)列{an}的通項(xiàng)公式.
(III)nan=
n
2
-n•
1
2n-1
,用分組求和法求出Tn,代入關(guān)系式,整理,考查不等式恒成立成立與否,注意分離參數(shù)思想方法的使用,及求含n的式子的最值.
解答:解:(I)當(dāng)n=1時(shí),a1S1= -a1+
1
2
(1-3)
,解得a1=-
1
2

   (II)當(dāng)n≥2時(shí),an=Sn-Sn-1
1
2
an-1+
1
4
,則an-
1
2
=
1
2
(an-1-
1
2
)

因此數(shù)列{an-
1
2
}是首項(xiàng)為-1,公比為
1
2
的等比數(shù)列,
an-
1
2
=(-1)•(
1
2
)
n-1

an=
1
2
-
1
2n-1

 數(shù)列{an}的通項(xiàng)公式是an=
1
2
-
1
2n-1

 (III)不等式2Tn≤(2n+4)Sn+3對(duì)一切正整數(shù)n都成立,
nan=
n
2
-n•
1
2n-1
,
Tn=
1
2
(1+2+3+…+n)
-(1+2•
1
2
+3•
1
22
+…+n•
1
2n-1
)

Un=-(1+2•
1
2
+3•
1
22
+…+n•
1
2n-1
)

1
2
 Un
1
2
+2•
1
22
+3•
1
23
+…+(n-1)•
1
2n-1
+n•
1
2n

上面兩式相減:
1
2
Un= 1+
1
2
+
1
22
 +…+
1
2n-1
-n•
1
2n

Un=4-
n+2
2n-1

Tn=
n(n+1)
4
- 4+
n+2
2n-1
=
n2+n-16
4
+
n+2
2n-1

Sn=-an+
1
2
(n-3)
=-
1
2
+
1
2n-1
+
n-3
2
=
n-4
2
+
1
2n-1

∴2Tn-(2n+4)Sn=
n2+n-16
2
+
n+2
2n-2
-
2(n+4)(n-4)
2
n+2
2n-2
=
-n2+5n
2

∴當(dāng)n=2或n=3時(shí),
-n2+5n
2
的值最大,最大值為3,
∴對(duì)一切正整數(shù)n.2Tn-(2n+4)Sn≤3
∴不等式2Tn-(2n+4)Sn+3對(duì)一切正整數(shù)n都成立.
點(diǎn)評(píng):本題考查用變形,化簡轉(zhuǎn)化成等差或等比數(shù)列,研究問題的知識(shí)方法.(Ⅱ)中的方法適用于形如:已知an+1=pan+q(p,q≠0),求an,注意分離參數(shù)思想方法,及求含n的式子的最值在研究數(shù)列與不等式綜合問題的價(jià)值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知n是正整數(shù),數(shù)列{an }的前n項(xiàng)和為Sn,a1=1,數(shù)列{
1an
}的前n項(xiàng)和為Tn,數(shù)列{ Tn }的前n項(xiàng)和為Pn,Sn是nan與an的等差中項(xiàng)•
(1)求Sn
(2)證明:(n+1)Tn+1-nTn-1=Tn;
(3)是否存在數(shù)列{bn},使Pn=(bn+1)Tn-bn?若存在,求出所有數(shù)列{bn},若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知n是正整數(shù),數(shù)列{art }的前n項(xiàng)和為Sna1=1,數(shù)列{
1
an
}的前n項(xiàng)和為Tn數(shù)列{ Tn }的前n項(xiàng)和為Pn,Sn,是nan,an的等差中項(xiàng)•
(I )求
lim
n→∞
Sn
n2

(II)比較(n+1)Tn+1-nTn與1+Tn大;
(III)是否存在數(shù)列{bn},使Pn=(bn+1)Tn-bn?若存在,求出所有數(shù)列{bn},若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知n是正整數(shù),數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn是nan與an的等差中項(xiàng),則an等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知n是正整數(shù),數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=-an+
12
(n-3),數(shù)列(nan)的前n項(xiàng)和為Tn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Tn
(3)設(shè)An=2Tn,Bn=(2n+4)Sn+3,試比較An與Bn的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案