分析:(1)由題設(shè)知2S
n=na
n+a
n,2S
n+1=(n+1)a
n+1+a
n+1,所以
=,
an=××…×× a1=n,由此能求出
Sn=.
(2)由(n+1)T
n+1-nT
n-1=n(T
n+1-T
n)+T
n+1-1=
+Tn+1-1=
+Tn+-1=Tn,知T
n=(n+1)T
n+1-nT
n-1.
(3)由T
n=(n+1)T
n+1-nT
n-1,知P
n=(n+1)T
n-n,故存在數(shù)列{b
n},使Pn=(b
n+1)T
n-b
n,且b
n=n.
解答:解:(1)∵S
n是na
n與a
n的等差中項(xiàng),
∴2S
n=na
n+a
n,
∴2S
n+1=(n+1)a
n+1+a
n+1,
∴2S
n+1-2S
n=2a
n+1=(n+1)a
n+1+a
n+1-na
n-a
n,
化簡(jiǎn),得
=,
∴
an=××…×× a1=n,
∴{a
n}是等差數(shù)列,
∴
Sn=.
(2)證明:∵(n+1)T
n+1-nT
n-1=n(T
n+1-T
n)+T
n+1-1
=
+Tn+1-1=
+Tn+-1=Tn,
∴T
n=(n+1)T
n+1-nT
n-1.
(3)解:∵T
n=(n+1)T
n+1-nT
n-1,
∴T
1+T
2+…+T
n=[2T
2-T
1-1]+[3T
3-2T
2-1]+…+[(n+1)T
n+1-nT
n-1]
=(n+1)T
n+1-T
1-n
=(n+1)T
n-n,
∴P
n=(n+1)T
n-n
∴存在數(shù)列{b
n},使Pn=(b
n+1)T
n-b
n,且b
n=n.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,注意數(shù)列的前n項(xiàng)和的求法和數(shù)列的證明,解題過程中合理地進(jìn)行等價(jià)轉(zhuǎn)化.