已知四棱錐的底面是直角梯形,,,側(cè)面為正三角形,,.如圖所示.

(1) 證明:平面;
(2) 求四棱錐的體積
(1) 證明如下 (2)

試題分析:證明(1) 直角梯形,又,

∴在△和△中,有

.                                          
(2)設(shè)頂點到底面的距離為.結(jié)合幾何體,可知
 又,,
于是,,解得
所以.          
點評:在立體幾何中,?嫉亩ɡ硎牵褐本與平面垂直的判定定理、直線與平面平行的判定定理。當(dāng)然,此類題目也經(jīng)常要我們求出幾何體的體積和表面積。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面為平行四邊形,平面中點.

(1)求證:平面;
(2)若,求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正四棱錐則的底面邊長為,高,則過點的球的半徑為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,四邊形ABCD是矩形,,F(xiàn)為CE上的點,且BF平面ACE,AC與BD交于點G

(1)求證:AE平面BCE
(2)求證:AE//平面BFD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正四棱錐中,,點M,N分別在PA,BD上,且

(Ⅰ)求異面直線MN與AD所成角;
(Ⅱ)求證:∥平面PBC;
(Ⅲ)求MN與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖所示的幾何體中,面為正方形,面為等腰梯形,,,,.

(1)求證:;
(2)求三棱錐的體積;
(3)線段上是否存在點,使//平面?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知所在的平面,是⊙的直徑,,C是⊙上一點,且

(1) 求證:;
(2) 求證:;
(3)當(dāng)時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知平面,為等邊三角形.

(1)若,求證:平面平面
(2)若多面體的體積為,求此時二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一空間幾何體的三視圖如圖,則該幾何體的體積為(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案