16.已知集合M={0,1},N={-1,0},則M∩N=( 。
A.{-1,0,1}B.{-1,1}C.{0}D.φ

分析 根據(jù)集合的基本運(yùn)算進(jìn)行求解即可.

解答 解:∵M(jìn)={0,1},N={-1,0},
∴M∩N={0},
故選:C.

點(diǎn)評 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}-2x+3,x≤0\\|{2-lnx}|,x>0\end{array}\right.$,直線y=k與函數(shù)f(x)的圖象相交于四個(gè)不同的點(diǎn),交點(diǎn)的橫坐標(biāo)從小到大依次記為a,b,c,d,則abcd的取值范圍是( 。
A.[0,e2]B.[0,e2C.[0,e4]D.[0,e4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\frac{201{5}^{(x+1)}+2017}{201{5}^{x}+1}$+2015sinx在x∈[-t,t]上的最大值為M,最小值為N,則M+N的值為( 。
A.0B.4032C.4030D.4034

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=1+Sn(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}為等差數(shù)列,且b1=a1,公差為$\frac{{a}_{2}}{{a}_{1}}$.當(dāng)n≥3時(shí),比較bn+1與1+b1+b2+…+bn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知(1+2i) z=3-i(i為虛數(shù)單位),則復(fù)數(shù)z=$\frac{1}{5}-\frac{7}{5}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-(2a+1)x+alnx,a∈R
(1)當(dāng)a=1,求f(x)的單調(diào)區(qū)間;
(2)a>1時(shí),求f(x)在區(qū)間[1,e]上的最小值;
(3)g(x)=(1-a)x,若$?{x_0}∈[{\frac{1}{e},e}]$使得f(x0)≥g(x0)成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.閱讀如圖所示的程序,該程序輸出的結(jié)果是27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ln($\frac{1}{2}+\frac{1}{2}ax$)+x2-ax(a為常數(shù),且a>0).
(Ⅰ)若x=$\frac{1}{2}$是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
(Ⅱ)當(dāng)0<a≤2時(shí),判斷f(x)在[$\frac{1}{2},+∞)$上的單調(diào)性,并加以證明;
(Ⅲ)若對任意的a∈(1+$\frac{1}{n+1}$,2)(n∈N+,且n為常數(shù)),總存在x0∈[$\frac{1}{2},1$],使不等式f(x0)>m(1-a2)成立(m為正實(shí)數(shù)),試比較m與$\frac{n+1}{4n+6}$的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.正三棱錐S-ABC,底面邊長為3,側(cè)棱長為2,則其外接球和內(nèi)切球的半徑是多少?

查看答案和解析>>

同步練習(xí)冊答案