(本小題滿分12分)某校高一(2)班共有60名同學(xué)參加期末考試,現(xiàn)將其數(shù)學(xué)學(xué)科成績(均為整數(shù))分成六個(gè)分?jǐn)?shù)段,畫出如下圖所示的部分頻率分布直方圖,請觀察圖形信息,回答下列問題:
(1)求70~80分?jǐn)?shù)段的學(xué)生人數(shù);
(2)估計(jì)這次考試中該學(xué)科的優(yōu)分率(80分及以上為優(yōu)分)
(3)現(xiàn)根據(jù)本次考試分?jǐn)?shù)分成下列六段(從低分段到高分段依次為第一組、第二組、…、第六組)為提高本班數(shù)學(xué)整體成績,決定組與組之間進(jìn)行幫扶學(xué)習(xí).若選出的兩組分?jǐn)?shù)之差大于30分(以分?jǐn)?shù)段為依據(jù),不以具體學(xué)生分?jǐn)?shù)為依據(jù)),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.

(1)N=60×0.3=18(人)
(2) P=
(3)
解:(1)N=60×0.3=18(人)…………………………………3分
(2) P=……………………………………….7分
(3)所有的組合數(shù):(1,2)(1,3)(1,4)(1,5)(1,6)
(2,3)(2,4)(2,5)(2,6)
(3,4)(3,5)(3,6)
(4,5)(4,6)
(5,6)          n=5+4+3+2+1=15………….9分
符合“最佳組合”條件的有:(1,4)(1,5)(1,6)
(2,5)(2,6)
(3,6)                m=6………….11分
所以…………………………………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)(文科做前兩問;理科全做.)
某會(huì)議室用3盞燈照明,每盞燈各使用節(jié)能燈棍一只,且型號(hào)相同.假定每盞燈能否正常照明只與燈棍的壽命有關(guān),該型號(hào)的燈棍壽命為1年以上的概率為0.8,壽命為2年以上的概率為0.3,從使用之日起每滿1年進(jìn)行一次燈棍更換工作,只更換已壞的燈棍,平時(shí)不換.
(I)在第一次燈棍更換工作中,求不需要更換燈棍的概率;
(II)在第二次燈棍更換工作中,對其中的某一盞燈來說,求該燈需要更換燈棍的概率;
(III)設(shè)在第二次燈棍更換工作中,需要更換的燈棍數(shù)為ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有一部四卷文集,按任意順序排放在書架的同一層上,則各卷自左到右或由右到左卷號(hào)恰為1,2,3,4順序的概率等于(    )                  
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某班全部名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒和18秒之間。將測試結(jié)果按如下方式分為五組:第一組[13,14);第二組[14,15);…;第五組[17,18],表是按上述分組方式得到的頻率分布表。
分 組
頻數(shù)
頻率
[13,14)


[14,15)


[15,16)


[16,17)


[17,18]


(1)求及上表中的的值;
(2)設(shè)m,n是從第一組或第五組中任意抽取的兩名學(xué)生的百米測試成績,求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)
一種填數(shù)字彩票2元一張,購買者在彩票上依次填上0~9中的兩個(gè)數(shù)字(允許重復(fù)),中獎(jiǎng)規(guī)則如下:如果購買者所填的兩個(gè)數(shù)字依次與開獎(jiǎng)的四個(gè)有序數(shù)字分別對應(yīng)相等,則中一等獎(jiǎng)10元;如果購買者所填的兩個(gè)數(shù)字中,只有第二個(gè)數(shù)字與開獎(jiǎng)的第二個(gè)數(shù)字相等,則中二等獎(jiǎng)2元,其他情況均不中獎(jiǎng)。
⑴小明和小輝在沒有商量的情況下各買了一張這種彩票,求他倆都中一等獎(jiǎng)的概率;
⑵求購買一張這種彩票能夠中獎(jiǎng)的概率;
⑶設(shè)購買一張這種彩票的收益為隨機(jī)變量§,求§的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)
甲、乙、丙三人分別獨(dú)立解一道題,甲做對的概率是,甲、乙、丙三人都做對的概率是,甲、乙、丙全部做錯(cuò)的概率是
(Ⅰ)分別求乙、丙兩人各自做對這道題的概率;
(Ⅱ)求甲、乙、丙中恰有一個(gè)人做對這道題的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分) 甲、乙兩隊(duì)各有n個(gè)隊(duì)員,已知甲隊(duì)的每個(gè)隊(duì)員分別與乙隊(duì)的每個(gè)隊(duì)員各握手一次 (同隊(duì)的隊(duì)員之間不握手),從這n2次的握手中任意取兩次.記
事件A:兩次握手中恰有4個(gè)隊(duì)員參與;
事件B:兩次握手中恰有3個(gè)隊(duì)員參與.
(Ⅰ) 當(dāng)n=4時(shí),求事件A發(fā)生的概率P(A);
(Ⅱ) 若事件B發(fā)生的概率P (B)<,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從紅、白、黑、黃、綠雙只有顏色不同的手套中隨機(jī)的取出只,則恰好有兩只成一雙的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(18分)某游戲設(shè)有兩關(guān),只有過了第一關(guān)才能玩第二關(guān),每關(guān)最多玩兩次,連續(xù)兩次失敗者被淘汰.過關(guān)者可獲獎(jiǎng)金, v只過第一關(guān)獲900元,兩關(guān)全過獲3600元。某人過每一關(guān)的概率均為,各次過關(guān)與否互不影響,且此人不放棄所有機(jī)會(huì)。
(1)求該人獲得900元獎(jiǎng)金的概率
(2)若該人已順利通過第一關(guān),求他獲得3600元獎(jiǎng)金的概率
(3)求該人獲得獎(jiǎng)金額X的數(shù)學(xué)期望E(X) (精確到元)

查看答案和解析>>

同步練習(xí)冊答案