有2人從一座n層大樓的底層進(jìn)入電梯,設(shè)他們中的每一個(gè)人的第二層開始在每一層離開時(shí)等可能的,若2人在不同層離開的概率為
8
9
,則n=
 
考點(diǎn):等可能事件的概率
專題:概率與統(tǒng)計(jì)
分析:根據(jù)2個(gè)人離開的方法種數(shù)為 (n-1)2,2個(gè)人在不同層離開的方法數(shù)為(n-1)(n-2),由2個(gè)人在不同層離開的概率為
(n-1)(n-2)
(n-1)2
=
8
9
,求得n的值.
解答: 解:2個(gè)人離開的方法種數(shù)為 (n-1)2,2個(gè)人在不同層離開的方法數(shù)為(n-1)(n-2),
則2個(gè)人在不同層離開的概率為
(n-1)(n-2)
(n-1)2
=
8
9
,求得 n=10,
故答案為:10.
點(diǎn)評:本題主要考查等可能事件的概率,求出2個(gè)人在不同層離開的方法數(shù)為 (n-1)(n-2),是解題的關(guān)鍵,屬于中
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,多面體OABCD,AB=CD=2,AD=BC=2
3
,AC=BD=
10
,且OA,OB,OC兩兩垂直,給出下列4個(gè)結(jié)論:
①三棱錐O-ABC的體積是定值;
②直線AD與OB所成的角是60°;
③球面經(jīng)過點(diǎn)A、B、C、D兩點(diǎn)的球的直徑是
13
;
④直線OB∥平面ACD.
其中正確的結(jié)論是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2+mx+5)ex,x∈R.
(1)若函數(shù)f(x)沒有極值點(diǎn),求m的取值范圍;
(2)若函數(shù)f(x)圖象在點(diǎn)(3,f(3))處切線與y軸垂直,求證:對于任意x1,x2∈[0,4]都有|f(x1)-f(x2)|≤e3+e4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓的焦點(diǎn)分長軸為
3
:2的兩段,則離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)f(x)的圖象過點(diǎn)P(16,4),則此函數(shù)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列函數(shù)的奇偶性
(1)f(x)=(x+1)
1-x
1+x

(2)f(x)=x2-x3
(3)f(x)=
x2+x,x<0
-x2+x,x>0

(4)f(x)=
x2-1
+
1-x2

(5)f(x)=
4-x2
|x+3|-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:(
1
2
)-0.3
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

所有棱長都相等的正三棱錐的側(cè)棱和底面所成角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一只小球放入一長方體容器內(nèi),且與共點(diǎn)的三個(gè)面相接觸.若小球上一點(diǎn)到這三個(gè)面的距離分別為4、5、5,則這只小球的半徑是( 。
A、3或8B、8或11
C、5或8D、3或11

查看答案和解析>>

同步練習(xí)冊答案