已知非零數(shù)列{an}的前n項和為Sn,且an是Sn與2的等差中項,數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.

(Ⅰ)求數(shù)列{an},{bn}的通項an和bn;

(Ⅱ)設cn=an·bn,數(shù)列{cn}的前n項和為Tn,若不等式nTn>a·2n+6n對任意的n∈N*恒成立,求實數(shù)a的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知非零向量列{an}滿足:a1=(1,1),且an=(xn,yn)=
12
(xn-1-yn-1,xn-1+yn-1) (n>1,n∈N),令|an|=bn
(Ⅰ)證明:數(shù)列{bn}是等比數(shù)列,并求{bn}的通項公式;
(Ⅱ)對n∈N*,設cn=bnlog2bn,試問是否存在正整數(shù)m,使得cm<cm+1?若存在,請求出m的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}的前n項和為Sn,且Sn=
an(an+2)
4
(n∈N*).
(1)求a1的值及數(shù)列{an}的通項公式;
(2)求證:
1
a
3
1
+
1
a
3
2
+
1
a
3
3
+…+
1
a
3
n
5
32
(n∈N*);
(3)是否存在非零整數(shù)λ,使不等式λ(1-
1
a1
)(1-
1
a2
)…(1-
1
an
)cos
πan+1
2
1
an+1
對一切n∈N*都成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題,其中正確的命題是
①②⑤
①②⑤
(寫出所有正確命題的編號).
①在△ABC中,若tanA+tanB+tanC>0,則△ABC是銳角三角形;
②在△ABC中,A<B是cosA>cosB的充要條件;
③已知非零向量
a
b
,則“
a
b
>0
”是“
a
b
的夾角為銳角”的充要條件;
④若數(shù)列{an}為等比數(shù)列,則“a3a5=16”是“a4=4”的充分不必要條件;
⑤函數(shù)f(x)的導函數(shù)為f'(x),若對于定義域內任意x1,x2(x1≠x2),有
f(x1)-f(x2)
x1-x2
=f′(
x1+x2
2
)
恒成立,則稱f(x)為恒均變函數(shù),那么f(x)=x2-2x+3為恒均變函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省珠海市高三(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

已知正項數(shù)列{an}的前n項和為Sn,且Sn=(n∈N*).
(1)求a1的值及數(shù)列{an}的通項公式;
(2)求證:+++…+(n∈N*);
(3)是否存在非零整數(shù)λ,使不等式λ(1-)(1-)…(1-)cos對一切n∈N*都成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案