【題目】請你設(shè)計(jì)一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個點(diǎn)重合于圖中的點(diǎn)P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個端點(diǎn),設(shè)AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應(yīng)取何值?并求出此時包裝盒的高與底面邊長的比值.
【答案】
(1)解:設(shè)包裝盒的高為h(cm),底面邊長為a(cm),則a= x,h= (30﹣x),0<x<30.
S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,
∴當(dāng)x=15時,S取最大值
(2)解:V=a2h=2 (﹣x3+30x2),V′=6 x(20﹣x),
由V′=0得x=20,
當(dāng)x∈(0,20)時,V′>0;當(dāng)x∈(20,30)時,V′<0;
∴當(dāng)x=20時,包裝盒容積V(cm3)最大,
此時, .
即此時包裝盒的高與底面邊長的比值是
【解析】(1)可設(shè)包裝盒的高為h(cm),底面邊長為a(cm),寫出a,h與x的關(guān)系式,并注明x的取值范圍.再利用側(cè)面積公式表示出包裝盒側(cè)面積S關(guān)于x的函數(shù)解析式,最后求出何時它取得最大值即可;(2)利用體積公式表示出包裝盒容積V關(guān)于x的函數(shù)解析式,最后利用導(dǎo)數(shù)知識求出何時它取得的最大值即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0,|φ|<π)的部分圖象如圖所示,則下列結(jié)論正確的是( )
A.函數(shù)f(x)的最小正周期為
B.直線x=﹣ 是函數(shù)f(x)圖象的一條對稱軸
C.函數(shù)f(x)在區(qū)間[﹣ , ]上單調(diào)遞增
D.將函數(shù)f(x)的圖象向左平移 個單位,得到函數(shù)g(x)的圖象,則g(x)=2sin2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,
(1)若a=﹣1,求f(x)的單調(diào)區(qū)間;
(2)若f(x)有最大值3,求a的值.
(3)若f(x)的值域是(0,+∞),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x),g(x)滿足 f(x)g(x)dx=0,則f(x),g(x)為區(qū)間[﹣1,1]上的一組正交函數(shù),給出三組函數(shù): ①f(x)=sin x,g(x)=cos x;
②f(x)=x+1,g(x)=x﹣1;
③f(x)=x,g(x)=x2 ,
其中為區(qū)間[﹣1,1]上的正交函數(shù)的組數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x)是k型函數(shù).給出下列說法:①f(x)=3﹣ 不可能是k型函數(shù); ②若函數(shù)y=﹣ x2+x是3型函數(shù),則m=﹣4,n=0;
③設(shè)函數(shù)f(x)=x3+2x2+x(x≤0)是k型函數(shù),則k的最小值為 ;
④若函數(shù)y= (a≠0)是1型函數(shù),則n﹣m的最大值為 .
下列選項(xiàng)正確的是( )
A.①③
B.②③
C.②④
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了培養(yǎng)學(xué)生的數(shù)學(xué)建模和應(yīng)用能力,某校組織了一次實(shí)地測量活動,如圖,假設(shè)待測量的樹木AE的高度H(m),垂直放置的標(biāo)桿BC的高度h=4m,仰角∠ABE=α,∠ADE=β(D,C,E三點(diǎn)共線),試根據(jù)上述測量方案,回答如下問題:
(1)若測得α=60°、β=30°,試求H的值;
(2)經(jīng)過分析若干次測得的數(shù)據(jù)后,大家一致認(rèn)為適當(dāng)調(diào)整標(biāo)桿到樹木的距離d(單位:m),使α與β之差較大時,可以提高測量精確度.
若樹木的實(shí)際高度為8m,試問d為多少時,α﹣β最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若過定點(diǎn)M(﹣1,0)且斜率為k的直線與圓x2+4x+y2﹣5=0在第一象限內(nèi)的部分有交點(diǎn),則k的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 =1(a>b>0)的離心率為 ,過焦點(diǎn)垂直長軸的弦長為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右頂點(diǎn)作直線交拋物線y2=2x于A、B兩點(diǎn),求證:OA⊥OB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足
(1)計(jì)算a1 , a2 , a3 , a4
(2)猜想an的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com