【題目】已知橢圓E: 的左焦點(diǎn)為,且過點(diǎn).
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線與橢圓E交于兩點(diǎn),與的交點(diǎn)為,且滿足.
①若,求: 的值;
②設(shè)點(diǎn)是橢圓E的左頂點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為點(diǎn),試探究:在線段上是否存在一個(gè)定點(diǎn),使得直線過定點(diǎn),如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由。
【答案】(1);(2)① ②故存在使得直線過定點(diǎn)。
【解析】試題分析:(1)由點(diǎn)在橢圓上及焦點(diǎn)坐標(biāo),利用定義,可得,進(jìn)而得方程;
(2)①設(shè), ,直線與橢圓聯(lián)立得: ,由得,進(jìn)而利用韋達(dá)定理求解即可;
②假設(shè)存在使得直線過定點(diǎn)。則,由,利用坐標(biāo)表示,結(jié)合韋達(dá)定理求解即可.
試題解析:
(Ⅰ)因?yàn)榻裹c(diǎn)為, ,又橢圓過,
取橢圓的右焦點(diǎn), ,由得,
所以橢圓的方程為
(Ⅱ)①設(shè), ,
因?yàn)橹本與橢圓交于兩點(diǎn),
由得:
得, ,(1)
(2)
由(1)(2)解得:
符合,所以,
解得,
②假設(shè)存在使得直線過定點(diǎn)。則
則
又, 即
因?yàn)?/span>, ,
即得:
故存在使得直線過定點(diǎn)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn=1(n∈N),數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1=,而b2,b5,ba14成等比數(shù)列.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:①若,則;②若,,則;③若,則;④;⑤若,,則,;⑥正數(shù),滿足,則的最小值為.其中正確命題的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車是城市交通的一道亮麗的風(fēng)景,給人們短距離出行帶來(lái)了很大的方便.某!眴诬嚿鐖F(tuán)”對(duì)市年齡在歲騎過共享單車的人群隨機(jī)抽取人調(diào)查,騎行者的年齡情況如下圖顯示。
(1)已知年齡段的騎行人數(shù)是兩個(gè)年齡段的人數(shù)之和,請(qǐng)估計(jì)騎過共享單車人群的年齡的中位數(shù);
(2)從兩個(gè)年齡段騎過共享單車的人中按的比例用分層抽樣的方法抽取人,從中任選人,求兩人都在)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,直線與E交于A、B兩點(diǎn),且,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為,證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形中, , 邊所在直線的方程為,點(diǎn)在邊所在直線上.
()求邊所在直線的方程.
()求矩形外接圓的方程.
()若過點(diǎn)作題()中的圓的切線,求切線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形中,,,,,,分別在,上,,現(xiàn)將四邊形沿折起,使平面平面.
(Ⅰ)若,在折疊后的線段上是否存在一點(diǎn),且,使得平面?若存在,求出的值;若不存在,說(shuō)明理由;
(Ⅱ)求三棱錐的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)復(fù)數(shù)z=2m+(4-m2)i,當(dāng)實(shí)數(shù)m取何值時(shí),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn):
(1)位于虛軸上?
(2)位于一、三象限?
(3)位于以原點(diǎn)為圓心,以4為半徑的圓上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積.弧田,由圓弧和其所對(duì)的弦所圍成.公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與實(shí)際面積之間存在誤差.現(xiàn)有圓心角為,弦長(zhǎng)等于米的弧田. 按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與實(shí)際面積的誤差為_______平方米.(用“實(shí)際面積減去弧田面積”計(jì)算)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com