觀察sin2+cos2+sincos;sin2+cos2+sin.請寫出一個與以上兩式規(guī)律相同的一個等式:________.

答案:
解析:

sin2 +cos2 +sin cos =

sin2+cos2+sincos


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

觀察sin230°+cos260°+sin30°cos60°=
3
4
,sin220°+cos250°+sin20°cos50°=
3
4
和sin215°+cos245°+sin15°cos45°=
3
4
,…,由此得出的以下推廣命題中,不正確的是( 。
A、sin2(α-30°)+cos2α+sin(α-30°)cosα=
3
4
B、sin2α+cos2β+sinαcosβ=
3
4
C、sin2(α-15°)+cos2(α+15°)+sin(α-15°)cos(α+15°)=
3
4
D、sin2α+cos2(α+30°)+sinαcos(α+30°)=
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寶雞模擬)觀察等式:sin230°+cos260°+sin30°cos60°=
3
4
,sin220°+cos250°+sin20°cos50°=
3
4
sin215°+cos245°+sin15°cos45°=
3
4
,…
,由此得出以下推廣命題不正確的是

sin2α+cos2β+sinαcosβ=
3
4
;
sin2(α-30°)+cos2α+sin(α-30°)cosα=
3
4

sin2(α-15°)+cos2(α+15°)+sin(α-15°)cos(α+15°)=
3
4
;
sin2α+cos2(α+30°)+sinαcos(α+30°)=
3
4

查看答案和解析>>

科目:高中數(shù)學 來源:廣東省汕頭市澄海中學2010屆高三上學期期中考試數(shù)學(理)試題 題型:022

觀察以下各式:

sin2+cos2+sincos

sin2+cos2+sincos

sin2+cos2+sincos

分析上述各式的共同特點,寫出能反映一般規(guī)律的等式________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

觀察sin230°+cos260°+sin30°cos60°=
3
4
,sin220°+cos250°+sin20°cos50°=
3
4
和sin215°+cos245°+sin15°cos45°=
3
4
,…,由此得出的以下推廣命題中,不正確的是( 。
A.sin2(α-30°)+cos2α+sin(α-30°)cosα=
3
4
B.sin2α+cos2β+sinαcosβ=
3
4
C.sin2(α-15°)+cos2(α+15°)+sin(α-15°)cos(α+15°)=
3
4
D.sin2α+cos2(α+30°)+sinαcos(α+30°)=
3
4

查看答案和解析>>

同步練習冊答案