【題目】近年來(lái),我國(guó)自主研發(fā)的長(zhǎng)征系列火箭的頻頻發(fā)射成功,標(biāo)志著我國(guó)在該領(lǐng)域已逐步達(dá)到世界一流水平.火箭推進(jìn)劑的質(zhì)量為,去除推進(jìn)劑后的火箭有效載荷質(zhì)量為,火箭的飛行速度為,初始速度為,已知其關(guān)系式為齊奧爾科夫斯基公式:,其中是火箭發(fā)動(dòng)機(jī)噴流相對(duì)火箭的速度,假設(shè),,,是以為底的自然對(duì)數(shù),,.
(1)如果希望火箭飛行速度分別達(dá)到第一宇宙速度、第二宇宙速度、第三宇宙速度時(shí),求的值(精確到小數(shù)點(diǎn)后面1位).
(2)如果希望達(dá)到,但火箭起飛質(zhì)量最大值為,請(qǐng)問(wèn)的最小值為多少(精確到小數(shù)點(diǎn)后面1位)?由此指出其實(shí)際意義.
【答案】(1) (2)見(jiàn)解析
【解析】
(1)弄清題意,將相關(guān)數(shù)據(jù)代入齊奧爾科夫斯基公式:,即可得出各個(gè)等級(jí)的速度對(duì)應(yīng)的的值;
(2)弄清題意與相關(guān)名詞,火箭起飛質(zhì)量即為,將公式變形,分離出,解不等式即可得,的最小值為.
(1)由題意可得,,,且,
,
當(dāng)達(dá)到第一宇宙速度時(shí),有,
;
當(dāng)達(dá)到第二宇宙速度時(shí),有,
;
當(dāng)達(dá)到第三宇宙速度時(shí),有,
.
(2)因?yàn)橄M?/span>達(dá)到,但火箭起飛質(zhì)量最大值為,
,
,即,得,
的最小值為
比較(1)中當(dāng)達(dá)到第三宇宙速度時(shí),;火箭起飛質(zhì)量為,此時(shí),達(dá)到,但火箭起飛質(zhì)量最大值為,的最小值為.
由以上說(shuō)明實(shí)際意義為:不是火箭的推進(jìn)劑質(zhì)量越大,火箭達(dá)到的速度越大,當(dāng)減少推進(jìn)劑質(zhì)量,增大火箭發(fā)動(dòng)機(jī)噴流相對(duì)火箭的速度,同樣可以達(dá)到想要的速度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于下列結(jié)論:
①函數(shù)y=2x的圖象與函數(shù)y=log2x的圖象關(guān)于y軸對(duì)稱;
②函數(shù)y=ax+2(a>0且a≠1)的圖象可以由函數(shù)y=ax的圖象平移得到;
③方程log5(2x+1)=log5(x2-2)的解集為{-1,3};
④函數(shù)y=ln(1+x)-ln(1-x)為奇函數(shù).
其中不正確的是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=.
(1)求f(x)的解析式;
(2)判斷f(x)的單調(diào)性;
(3)若對(duì)任意的t∈R,不等式f(k-3t2)+f(t2+2t)≤0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù).
(1)已知的解集為,求實(shí)數(shù)的值;
(2)已知,設(shè)、是關(guān)于的方程的兩根,且,求實(shí)數(shù)的值;
(3)已知滿足,且關(guān)于的方程的兩實(shí)數(shù)根分別在區(qū)間內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《數(shù)書(shū)九章》中有“天池盆測(cè)雨”題,大概意思如下:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水,天池盆盆口直徑為2尺8寸,盆底直徑為l尺2寸,盆深1尺8寸.若盆中積水深9寸,則平均降雨量是(注:①平均降雨量等于盆中積水體積除以盆口面積;②1尺等于10寸)( )
A. 3寸B. 4寸C. 5寸D. 6寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且.
(1)求的值;
(2)畫(huà)出圖像,并寫(xiě)出單調(diào)遞增區(qū)間(不需要說(shuō)明理由);
(3)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列說(shuō)法:
①函數(shù)y=cos(-2x)的最小正周期是π;
②終邊在y軸上的角的集合是{α|α=,k∈Z};
③在同一直角坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn);
④函數(shù)y=sin(x-)在[0,π]上是增函數(shù).其中,正確的說(shuō)法是________.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某四面體的六條棱長(zhǎng)分別為3,3,2,2,2,2,則兩條較長(zhǎng)棱所在直線所成角的余弦值為( )
A. 0B. C. 0或D. 以上都不對(duì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠有兩臺(tái)不同機(jī)器A和B生產(chǎn)同一種產(chǎn)品各10萬(wàn)件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取二十件,進(jìn)行品質(zhì)鑒定,鑒定成績(jī)的莖葉圖如下所示:
該產(chǎn)品的質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)規(guī)定:鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為優(yōu)秀;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為良好;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
(1)從等級(jí)為優(yōu)秀的樣本中隨機(jī)抽取兩件,記為來(lái)自B機(jī)器生產(chǎn)的產(chǎn)品數(shù)量,寫(xiě)出的分布列,并求的數(shù)學(xué)期望;
(2)完成下列列聯(lián)表,以產(chǎn)品等級(jí)是否達(dá)到良好以上(含良好)為判斷依據(jù),判斷能不能在誤差不超過(guò)0.05的情況下,認(rèn)為B機(jī)器生產(chǎn)的產(chǎn)品比A機(jī)器生產(chǎn)的產(chǎn)品好;
A生產(chǎn)的產(chǎn)品 | B生產(chǎn)的產(chǎn)品 | 合計(jì) | |
良好以上(含良好) | |||
合格 | |||
合計(jì) |
(3)已知優(yōu)秀等級(jí)產(chǎn)品的利潤(rùn)為12元/件,良好等級(jí)產(chǎn)品的利潤(rùn)為10元/件,合格等級(jí)產(chǎn)品的利潤(rùn)為5元/件,A機(jī)器每生產(chǎn)10萬(wàn)件的成本為20萬(wàn)元,B機(jī)器每生產(chǎn)10萬(wàn)件的成本為30萬(wàn)元;該工廠決定:按樣本數(shù)據(jù)測(cè)算,兩種機(jī)器分別生產(chǎn)10萬(wàn)件產(chǎn)品,若收益之差達(dá)到5萬(wàn)元以上,則淘汰收益低的機(jī)器,若收益之差不超過(guò)5萬(wàn)元,則仍然保留原來(lái)的兩臺(tái)機(jī)器.你認(rèn)為該工廠會(huì)仍然保留原來(lái)的兩臺(tái)機(jī)器嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com