(08年揚(yáng)州中學(xué))通過(guò)觀察下述兩等式的規(guī)律,請(qǐng)你寫出一個(gè)(包含下面兩命題)一般性的

命題:                                       .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 (08年揚(yáng)州中學(xué)) 已知數(shù)列,中,,且是函數(shù)

的一個(gè)極值點(diǎn).

(1)求數(shù)列的通項(xiàng)公式;

(2) 若點(diǎn)的坐標(biāo)為(1,)(,過(guò)函數(shù)圖像上的點(diǎn) 的切線始終與平行(O 為原點(diǎn)),求證:當(dāng) 時(shí),不等式

對(duì)任意都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 (08年揚(yáng)州中學(xué)) 已知數(shù)列,中,,且是函數(shù)

的一個(gè)極值點(diǎn).

(1)求數(shù)列的通項(xiàng)公式;

(2) 若點(diǎn)的坐標(biāo)為(1,)(,過(guò)函數(shù)圖像上的點(diǎn) 的切線始終與平行(O 為原點(diǎn)),求證:當(dāng) 時(shí),不等式

對(duì)任意都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 (08年揚(yáng)州中學(xué)) (16分)

表示數(shù)列從第項(xiàng)到第項(xiàng)(共項(xiàng))之和.

(1)在遞增數(shù)列中,是關(guān)于的方程為正整數(shù))的兩個(gè)根.求的通項(xiàng)公式并證明是等差數(shù)列;

(2)對(duì)(1)中的數(shù)列,判斷數(shù)列,,,…,的類型;

(3)對(duì)一般的首項(xiàng)為,公差為的等差數(shù)列,提出與(2)類似的問題,你可以得到怎樣的結(jié)論,證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 (08年揚(yáng)州中學(xué)) 設(shè)數(shù)列的各項(xiàng)都是正數(shù),且對(duì)任意,都有,記為數(shù)列的前項(xiàng)和

    ⑴求證:;

  ⑵求數(shù)列的通項(xiàng)公式;

⑶若為非零常數(shù),),問是否存在整數(shù),使得對(duì)任意,都有

查看答案和解析>>

同步練習(xí)冊(cè)答案