【題目】如圖,某市擬在長為8 km的道路OP的一側(cè)修建一條運(yùn)動賽道,賽道的前一部分為曲線段OSM,該曲線段為函數(shù),的圖象,且圖象的最高點(diǎn)為;賽道的后一部分為折線段MNP.為保證參賽運(yùn)動員的安全,限定.
(1)求點(diǎn)M的坐標(biāo);
(2)應(yīng)如何設(shè)計(jì),才能使折線段賽道MNP最長?
【答案】(1) .(2) 將設(shè)計(jì)為時(shí),折線段賽道MNP最長.
【解析】
(1)利用圖象分別求得周期和的值,進(jìn)而求得最后得到函數(shù)解析式,即可求得的坐標(biāo).
(2)設(shè),利用正弦定理表示出,,即可表示出,用兩角和差的正弦公式化簡,根據(jù)三角函數(shù)的性質(zhì)求得最大值.
解:(1)由題意知,,
∵,∴,
∴.
當(dāng)時(shí),,
∴.
(2)連接MP,如圖所示.
又∵,∴.
在中,,.
設(shè),則,
∵.
∴,.
∴
.
∵,
∴,
∴.
∴當(dāng)時(shí),折線段賽道MNP最長.
所以將設(shè)計(jì)為時(shí),折線段賽道MNP最長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知橢圓:的離心率是,斜率不為0的直線:與相交于、兩點(diǎn),與軸相交于點(diǎn).
(1)若、分別是的左、右焦點(diǎn),當(dāng)經(jīng)過且時(shí),求的值;
(2)試探究,是否存在點(diǎn),使得?若存在,請寫出滿足條件的、的關(guān)系式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水車在古代是進(jìn)行灌溉引水的工具,是人類的一項(xiàng)古老的發(fā)明,也是人類利用自然和改造自然的象征.如圖是一個(gè)半徑為R的水車,一個(gè)水斗從點(diǎn)A(3,-3)出發(fā),沿圓周按逆時(shí)針方向勻速旋轉(zhuǎn),且旋轉(zhuǎn)一周用時(shí)60秒.經(jīng)過t秒后,水斗旋轉(zhuǎn)到P點(diǎn),設(shè)P的坐標(biāo)為(x,y),其縱坐標(biāo)滿足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|<).則下列敘述錯誤的是( )
A.R=6,ω=,φ=-
B.當(dāng)t∈[35,55]時(shí),點(diǎn)P到x軸的距離的最大值為6
C.當(dāng)t∈[10,25]時(shí),函數(shù)y=f(t)單調(diào)遞減
D.當(dāng)t=20時(shí),|PA|=6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)試討論函數(shù)的單調(diào)區(qū)間;
(2)若不等式對于任意的恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)=[].
(Ⅰ)若曲線y= f(x)在點(diǎn)(1,)處的切線與軸平行,求a;
(Ⅱ)若在x=2處取得極小值,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為,且經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)過點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,、,,點(diǎn)在橢圓上,為原點(diǎn).
⑴若,,求橢圓的離心率;
⑵若橢圓的右頂點(diǎn)為,短軸長為2,且滿足為橢圓的離心率).
①求橢圓的方程;
②設(shè)直線:與橢圓相交于、兩點(diǎn),若的面積為1,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是函數(shù)(其中常數(shù))圖象上的兩個(gè)動點(diǎn),點(diǎn),若的最小值為0,則函數(shù)的最大值為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com