曲線y=x2-x+2和直線y=x+m有兩個(gè)不同的交點(diǎn),則( )

  AmR            Bm(-∞,1)

  Cm=1            Dm(1,+)

 

答案:D
提示:

把直線帶入曲線,再由Δ>0即得。

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1為曲線y=x2+x-2在點(diǎn)(1,0)處的切線,l2為該曲線的另一條切線,且l1⊥l2
(Ⅰ)求直線l2的方程;
(Ⅱ)求由直線l1、l2和x軸所圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、曲線y=x2+x-2在點(diǎn)(1,0)處的切線方程為
3x-y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=x2-x+2和y=x+b有兩個(gè)不同的交點(diǎn),則(  )
A、b∈kB、b∈(-∞,1)C、b=1D、b∈(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:曲線y=x3-2ax2+2ax上任一點(diǎn)處的切線的傾斜角都是銳角;命題q:直線y=x+a與曲線y=x2-x+2有兩個(gè)公共點(diǎn);若命題p和命題q中有且只有一個(gè)是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1為曲線y=x2+x-2在點(diǎn)(0,-2)處的切線,l2為該曲線的另一條切線,且l1⊥l2,則直線l2的方程為:
x+y+3=0
x+y+3=0

查看答案和解析>>

同步練習(xí)冊(cè)答案