某動(dòng)物園要圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:元).
(Ⅰ)將y表示為x的函數(shù);
(Ⅱ)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.
考點(diǎn):基本不等式在最值問(wèn)題中的應(yīng)用
專題:應(yīng)用題,不等式的解法及應(yīng)用
分析:(Ⅰ)設(shè)矩形的另一邊長(zhǎng)為am,則根據(jù)圍建的矩形場(chǎng)地的面積為360m2,易得a,此時(shí)再根據(jù)舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,我們即可得到修建圍墻的總費(fèi)用y表示成x的函數(shù)的解析式;
(II)根據(jù)(Ⅰ)中所得函數(shù)的解析式,利用基本不等式,我們易求出修建此矩形場(chǎng)地圍墻的總費(fèi)用最小值,及相應(yīng)的x值.
解答: 解:(Ⅰ)設(shè)矩形的另一邊長(zhǎng)為am,
則y=45x+180(x-2)+180•2a=225x+360a-360.
由已知ax=360,得a=
360
x
,
所以y=225x+
3602
x
-360(x>2).
(II)因?yàn)閤>0,所以225x+
3602
x
≥10800,
所以y≥10440,當(dāng)且僅當(dāng)225x=
3602
x
時(shí),等號(hào)成立.
即當(dāng)x=24m時(shí),修建圍墻的總費(fèi)用最小,最小總費(fèi)用是10440元.
點(diǎn)評(píng):本題主要考查與函數(shù)有關(guān)的應(yīng)用問(wèn)題,利用條件建立函數(shù)關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐P-DEF中,頂點(diǎn)P在平面DEF上的射影為O.
(1)如果PE=PF=PD,證明O是三角形DEF的外心(外接圓的圓心)
(2)如果PE=PF=1,PD=2,EF=
2
,DE=DF=
5
,證明:O是三角形DEF的垂心(三條高的交點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
OP1
,
OP2
OP3
滿足條件
OP1
+
OP2
+
OP3
=0,|
OP1
|=|
OP2
|=|
OP3
|=1,則△P1P2P3是(  )
A、等腰三角形
B、等邊三角形
C、直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=( 
3
,1),向量
b
=(sin2x,cos2x),函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的表達(dá)式,并作出函數(shù)y=f(x)在一個(gè)周期內(nèi)的簡(jiǎn)圖(用五點(diǎn)法列表描點(diǎn));
(2)求函數(shù)y=f(x)的周期,并寫(xiě)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}是遞增數(shù)列,且滿足a4•a7=15,a3+a8=8
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
an
3n-1
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)與其導(dǎo)函數(shù)f′(x)滿足f(x)-xf′(x)>0,則有( 。
A、f(1)>2f(2)
B、f(1)<2f(2)
C、2f(1)>f(2)
D、2f(1)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:(
x-4
3
2≤4,q:x2-2x+1-m2≤0(m>0).
(1)分別求出命題p、命題q所表示的不等式的解集A,B;
(2)若¬p是¬q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=sin(sin2012°),b=sin(cos2012°),c=cos(sin2012°),d=cos(cos2012°),則a、b、c、d從小到大的順序是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,右頂點(diǎn)為A,P為橢圓C1上任意一點(diǎn).
(1)求
PF1
PF2
 的最大值;
(2)設(shè)雙曲線C2以橢圓C1的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn),B是雙曲線C2在第一象限上任意一點(diǎn),當(dāng)
PF1
PF2
的最大值為3c2時(shí),是否存在常數(shù)λ(λ>0),使得∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案