已知二次函數(shù)f(x)滿足:①當x=2時有極值;②圖象與y軸交點的縱坐標為-4,且在該點處的切線與直線4x+y-4=0平行.
(1)求f(-1)的值;
(2)若m∈R,求函數(shù)y=F(xlnx+m),x∈[1,e]的最小值;
(3)若曲線y=f(lnx),x∈(1,+∞)上任意一點處的切線的斜率恒大于k3-k-4,求k的取值范圍.

解:(1)設f(x)=ax2+bx+c(a≠0),由題意可得:f(0)=-4,∴c=-4 …(1分)
∴f'(x)=2ax+b
∵函數(shù)在x=2處有極值,
∴f'(2)=0,即4a=b=0 …(2分)
∵在點(0,-4)處的切線與直線4x+y-4=0平行
∴f'(0)=-4,即b=-4,故a=1…(3分)
∴f(x)=x2-4x-4,f(-1)=1+4-4=1.…(4分)
(2)∵f(x)=x2-4x-4=(x-2)2-8
∴y=f(xlnx+m)=(xlnx+m-2)2-8…(5分)
令t=xlnx
∴當x∈[1,e]時,t'=1+lnx≥1>0
∴t=xlnx在x∈[1,e]上單調遞增,∴0≤t≤e…(6分)
∴y=g(t)=(t+m-2)2-8(0≤t≤e)
函數(shù)y=g(t)=(t+m-2)2-8(0≤t≤e)的對稱軸為t=2-m.…(7分)
①當2-m≤0,即m≥2時,函數(shù)y=g(t)在區(qū)間[0,e]單調增,所以ymin=g(0)=(m-2)2-8…(8分)
②當0<2-m<e,即2-e<m<2時,函數(shù)y=g(t)在頂點取得最小值,所以ymin=g(2-m)=-8…(9分)
③當2-m≥e,即m≤2-e時,函數(shù)y=g(x)在區(qū)間[0,e]單調遞減,所以ymin=g(e)=(e+m-2)2-8…(10分)
(3)f(lnx)=(lnx)2-4lnx-4,令t=lnx,
∵x∈(1,+∞),
∴t>0,∴f(t)=t2-4t-4,∴f'(t)=2t-4.…(11分)
∵t>0,∴f'(t)>-4.…(12分)
由題意得k3-k-4<f'(t)恒成立,∴k3-k-4≤-4,∴k(k+1)(k-1)≤0,∴k≤-1或0≤k≤1,
∴k的取值范圍為k≤-1或0≤k≤1..…(14分)
分析:(1)設f(x)=ax2+bx+c(a≠0),由圖象與y軸交點的縱坐標為-4可得:f(0)=-4,,利用在點(0,-4)處的切線與直線4x+y-4=0平行,即可求得函數(shù)解析式,從而可求f(-1)的值;
(2)y=f(xlnx+m)=(xlnx+m-2)2-8,令t=xlnx,則問題轉化為y=g(t)=(t+m-2)2-8(0≤t≤e)的最小值,求得函數(shù)的對稱軸,分類討論可求;
(3)f(lnx)=(lnx)2-4lnx-4,令t=lnx,問題轉化為k3-k-4<f'(t)恒成立,由此可求k的取值范圍.
點評:本題考查函數(shù)的解析式,考查函數(shù)的單調性,考查恒成立問題,利用換元將問題簡化是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經過原點,且滿足f(2)=0,求實數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達式;
(Ⅱ)設函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結論給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點是(-1,2),且經過原點,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案