【題目】如圖,已知圓E:經(jīng)過橢圓C:()的左右焦點(diǎn),,與橢圓C在第一象限的交點(diǎn)為A,且,E,A三點(diǎn)共線.
(1)求橢圓C的方程;
(2)是否存在與直線(O為原點(diǎn))平行的直線l交橢圓C于M,N兩點(diǎn).使,若存在,求直線l的方程,不存在說明理由.
【答案】(1)(2)存在,
【解析】
(1)求出圓E與x軸的交點(diǎn)即可求得c,由,E,A三點(diǎn)共線推出為圓E的直徑且,勾股定理求出,利用橢圓的定義即可求出a,進(jìn)而求出b,即可求得橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)出直線方程,聯(lián)立直線與橢圓的方程,由韋達(dá)定理求出、的表達(dá)式,對(duì)進(jìn)行數(shù)量積的坐標(biāo)運(yùn)算即可求得參數(shù)m.
(1)令,則,解得,所以,
因?yàn)?/span>,E,A三點(diǎn)共線,所以為圓E的直徑,且,
所以.
因?yàn)?/span>,所以,
則,,,
所以橢圓C的方程為.
(2)由,則,
假設(shè)存在直線l:滿足條件,
由,得
設(shè)直線l交橢圓C于點(diǎn),,
則,,且,即,
,
,,解得,
故存在直線l:滿足條件
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的方程為:(x-3)2+(y-2)2=r2(r>0),若直線3x+y=3上存在一點(diǎn)P,在圓C上總存在不同的兩點(diǎn)M,N,使得點(diǎn)M是線段PN的中點(diǎn),則圓C的半徑r的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率,以橢圓的長軸和短軸為對(duì)角線的四邊形的周長為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若經(jīng)過點(diǎn)的直線交橢圓于兩點(diǎn),是否存在直線 ,使得到直線的距離滿足恒成立,若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b為實(shí)數(shù),函數(shù).
(1)已知,討論的奇偶性;
(2)若,①若,求在上的值域;
②若,解關(guān)于x的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí), 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三期中考試后,數(shù)學(xué)教師對(duì)本次全部學(xué)生的數(shù)學(xué)成績按1∶20進(jìn)行分層抽樣,隨機(jī)抽取了20名學(xué)生的成績?yōu)闃颖,成績用莖葉圖記錄如圖所示,但部分?jǐn)?shù)據(jù)不小心丟失,同時(shí)得到如下表所示的頻率分布表:
分?jǐn)?shù)段(分) | 總計(jì) | |||||
頻數(shù) | ||||||
頻率 | 0.25 |
(1)求表中,的值及成績?cè)?/span>范圍內(nèi)的樣本數(shù);
(2)從成績內(nèi)的樣本中隨機(jī)抽取4個(gè)樣本,設(shè)其中成績?cè)?/span>內(nèi)的樣本個(gè)數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望;
(3)若把樣本各分?jǐn)?shù)段的頻率看作總體相應(yīng)各分?jǐn)?shù)段的概率,現(xiàn)從全校高三期中考試數(shù)學(xué)成績中隨機(jī)抽取5個(gè),求其中恰有2個(gè)成績?cè)?/span>內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=若函數(shù)f (x)的圖象與直線y=x有三個(gè)不同的公共點(diǎn),則實(shí)數(shù)a的取值集合為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)工廠在某年里連續(xù)10個(gè)月每月產(chǎn)品的總成本(萬元)與該月產(chǎn)量(萬件)之間有如下一組數(shù)據(jù):
1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 | |
2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過畫散點(diǎn)圖,發(fā)現(xiàn)可用線性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(2)①建立月總成本與月產(chǎn)量之間的回歸方程;②通過建立的關(guān)于的回歸方程,估計(jì)某月產(chǎn)量為1.98萬件時(shí),產(chǎn)品的總成本為多少萬元?(均精確到0.001)
附注:①參考數(shù)據(jù):,,,,.
②參考公式:相關(guān)系數(shù),,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com