某商店儲(chǔ)存的50個(gè)燈泡中,甲廠生產(chǎn)的燈泡占60%,乙廠生產(chǎn)的燈泡占40%,甲廠生產(chǎn)的燈泡的一等品率是90%,乙廠生產(chǎn)的燈泡的一等品率是80%.
(1)若從這50個(gè)燈泡中隨機(jī)抽取出1個(gè)燈泡(每個(gè)燈泡被取出的機(jī)會(huì)均等),則它是甲廠生產(chǎn)的一等品的概率是多少?
(2)若從這50個(gè)燈泡中隨機(jī)抽取出2個(gè)燈泡(每個(gè)燈泡被取出的機(jī)會(huì)均等),這2個(gè)燈泡中是甲廠生產(chǎn)的一等品的個(gè)數(shù)記為ξ,求E(ξ)的值.
(1) 0.54   (2) 1.08
(1)方法一:設(shè)事件A表示“甲廠生產(chǎn)的燈泡”,事件B表示“燈泡為一等品”,依題意有
P(A)=0.6,P(B|A)=0.9,
根據(jù)條件概率計(jì)算公式得
P(AB)=P(A)·P(B|A)=0.6×0.9=0.54.
方法二:該商店儲(chǔ)存的50個(gè)燈泡中,甲廠生產(chǎn)的燈泡有50×60%=30(個(gè)),乙廠生產(chǎn)的燈泡有50×40%=20(個(gè)),其中是甲廠生產(chǎn)的一等品有30×90%=27(個(gè)),故從這50個(gè)燈泡中隨機(jī)抽取出1個(gè)燈泡,它是甲廠生產(chǎn)的一等品的概率為=0.54.
(2)依題意,ξ的取值為0,1,2,
P(ξ=0)==,P(ξ=1)==,
P(ξ=2)==,
∴ξ的分布列為
ξ
0
1
2
P



∴E(ξ)=0×+1×+2×=1.08.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A,B,C,D四個(gè)城市,它們各自有一個(gè)著名的旅游點(diǎn),依次記為A,b,C,D,把A,B,C,D和A,b,C,D分別寫成左、右兩列.現(xiàn)在一名旅游愛好者隨機(jī)用4條線把城市與旅游點(diǎn)全部連接起來, 構(gòu)成“一一對(duì)應(yīng)”.規(guī)定某城市與自身的旅游點(diǎn)相連稱為“連對(duì)”,否則稱為“連錯(cuò)”,連對(duì)一條得2分,連錯(cuò)一條得0分.
(Ⅰ)求該旅游愛好者得2分的概率.
(Ⅱ)求所得分?jǐn)?shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知(
x
+
1
2•
4x
n的展開式前三項(xiàng)中的x的系數(shù)成等差數(shù)列.
(1)展開式中所有的x的有理項(xiàng)為第幾項(xiàng)?
(2)求展開式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某電視臺(tái)的一個(gè)智力游戲節(jié)目中,有一道將中國(guó)四大名著《三國(guó)演義》、《水滸傳》、《西游記》、《紅樓夢(mèng)》與它們的作者連線的題目,每本名著只能與一名作者連線,每名作者也只能與一本名著連線,每連對(duì)一個(gè)得2分,連錯(cuò)得-1分,某觀眾只知道《三國(guó)演義》的作者是羅貫中,其他不知道隨意連線,將他的得分記作ξ.
(1)求該觀眾得分ξ為負(fù)數(shù)的概率;
(2)求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

黃山旅游公司為了體現(xiàn)尊師重教,在每年暑假期間對(duì)來黃山旅游的全國(guó)各地教師和學(xué)生,憑教師證和學(xué)生證實(shí)行購(gòu)買門票優(yōu)惠.某旅游公司組織有22名游客的旅游團(tuán)到黃山旅游,其中有14名教師和8名學(xué)生.但是只有10名教師帶了教師證,6名學(xué)生帶了學(xué)生證.
(1)在該旅游團(tuán)中隨機(jī)采訪3名游客,求恰有1人持有教師證且持有學(xué)生證者最多1人的概率;
(2)在該團(tuán)中隨機(jī)采訪3名學(xué)生,設(shè)其中持有學(xué)生證的人數(shù)為隨機(jī)變量ξ,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若隨機(jī)變量X~B(n,0.6),且E(X)=3,則P(X=1)的值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)某項(xiàng)試驗(yàn)的成功率是失敗率的2倍,用隨機(jī)變量X去描述1次試驗(yàn)的成功次數(shù),則P(X=0)等于(  )
A.0B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)生參加某高校的自主招生考試,須依次參加A,B,C,DE五項(xiàng)考試,如果前四項(xiàng)中有兩項(xiàng)不合格或第五項(xiàng)不合格,則該考生就被淘汰,考試即結(jié)束;考生未被淘汰時(shí),一定繼續(xù)參加后面的考試.已知每一項(xiàng)測(cè)試都是相互獨(dú)立的,該生參加A,BC,D四項(xiàng)考試不合格的概率均為,參加第五項(xiàng)不合格的概率為.
(1)求該生被錄取的概率;
(2)記該生參加考試的項(xiàng)數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

目前,在我國(guó)部分省市出現(xiàn)了人感染H7N9禽流感病毒,為有效防控,2013年4月下旬,北京疫苗研制工作進(jìn)入動(dòng)物免疫原性試驗(yàn)階段。假定現(xiàn)已研制出批號(hào)分別為1,2,3,4,5的五批疫苗,準(zhǔn)備在A、B、C三種動(dòng)物身上做試驗(yàn),給每種動(dòng)物做實(shí)驗(yàn)所選用的疫苗是從這五個(gè)批號(hào)中任選其中一個(gè)批號(hào)的疫苗.
(Ⅰ)求給三種動(dòng)物注射疫苗的批號(hào)互不相同的概率;
(Ⅱ)記給A、B、C三種動(dòng)物注射疫苗的批號(hào)最大數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案