已知直線l經(jīng)過直線3x+4y-2=0與直線2x+y+2=0的交點P,且垂直于直線x-2y-1=0.求:
(Ⅰ)直線l的方程;
(Ⅱ)直線l與兩坐標(biāo)軸圍成的三角形的面積S.
分析:(Ⅰ)聯(lián)立兩直線方程得到方程組,求出方程組的解集即可得到交點P的坐標(biāo),根據(jù)直線l與x-2y-1垂直,利用兩直線垂直時斜率乘積為-1,可設(shè)出直線l的方程,把P代入即可得到直線l的方程;
(Ⅱ)分別令x=0和y=0求出直線l與y軸和x軸的截距,然后根據(jù)三角形的面積函數(shù)間,即可求出直線l與兩坐標(biāo)軸圍成的三角形的面積.
解答:解:(Ⅰ)由
解得
由于點P的坐標(biāo)是(-2,2).
則所求直線l與x-2y-1=0垂直,可設(shè)直線l的方程為2x+y+m=0.
把點P的坐標(biāo)代入得2×(-2)+2+m=0,即m=2.
所求直線l的方程為2x+y+2=0.
(Ⅱ)由直線l的方程知它在x軸.y軸上的截距分別是-1.-2,
所以直線l與兩坐標(biāo)軸圍成三角形的面積
S=×1×2=1.
點評:此題考查學(xué)生會利用聯(lián)立兩直線的方程的方法求兩直線的交點坐標(biāo),掌握直線的一般式方程,會求直線與坐標(biāo)軸的截距,是一道中檔題.