精英家教網 > 高中數學 > 題目詳情

【題目】如圖,三棱柱中,D的中點.

1)證明:平面;

2)若是邊長為2的正三角形,且,,平面平面.求平面與側面所成二面角的正弦值.

【答案】1)見解析(2

【解析】

1)連接,記,連接,證明得到答案.

2)證明,兩兩互相垂直,建立空間直角坐標系,計算平面和平面的法向量,利用向量夾角公式得到答案.

1)連接,記,連接,故中點,

D的中點,所以,又平面,平面.

平面.

2)取邊中點點O,連接,,因為為等邊三角形,,所以,

又平面平面,且平面平面,

平面,所以,兩兩互相垂直.

故以O為原點,建立空間直角坐標系如圖所示:

則由題意可知,,.

設平面的法向量,則,即

,解得,得.

顯然平面的一個法向量為.

,

∴二面角的正弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在生活中,我們常看到各種各樣的簡易遮陽棚.現(xiàn)有直徑為的圓面,在圓周上選定一個點固定在水平的地面上,然后將圓面撐起,使得圓面與南北方向的某一直線平行,做成簡易遮陽棚.設正東方向射出的太陽光線與地面成角,若要使所遮陰影面的面積最大,那么圓面與陰影面所成角的大小為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某藥業(yè)公司統(tǒng)計了2010-2019年這10年某種疾病的患者人數,結論如下:該疾病全國每年的患者人數都不低于100萬,其中有3年的患者人數低于200萬,有6年的患者人數不低于200萬且低于300萬,有1年的患者人數不低于300.

1)藥業(yè)公司為了解一新藥品對該疾病的療效,選擇了200名患者,隨機平均分為兩組作為實驗組和對照組,實驗結束時,有顯著療效的共110人,實驗組中有顯著療效的比率為70.請完成如下的2×2列聯(lián)表,并根據列聯(lián)表判斷是否有99.9%把握認為該藥品對該疾病有顯著療效;

實驗組

對照組

合計

有顯著療效

無顯著療效

合計

200

2)藥業(yè)公司最多能引進3條新藥品的生產線,據測算,公司按如下條件運行生產線:

該疾病患者人數(單位:萬)

最多可運行生產線數

1

2

3

每運行一條生產線,可產生年利潤6000萬元,沒運行的生產線毎條每年要虧損1000萬元.根據該藥業(yè)公司這10年的統(tǒng)計數據,將患者人數在以上三段的頻率視為相應段的概率、假設各年的患者人數相互獨立.欲使該藥業(yè)公司年總利潤的期望值達到最大,應引進多少條生產線?

附:參考公式:,其中.

0.05

0.025

0.010

0.001

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l3x+4y+m=0,圓Cx2+y24x+2=0,則圓C的半徑r=_____;若在圓C上存在兩點AB,在直線l上存在一點P,使得∠APB=90°,則實數m的取值范圍是____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】端午節(jié)是我國民間為紀念愛國詩人屈原的一個傳統(tǒng)節(jié)日.某市為了解端午節(jié)期間粽子的銷售情況,隨機問卷調查了該市1000名消費者在去年端午節(jié)期間的粽子購買量(單位:克),所得數據如下表所示:

購買量

人數

100

300

400

150

50

將煩率視為概率

1)試求消費者粽子購買量不低于300克的概率;

2)若該市有100萬名消費者,請估計該市今年在端午節(jié)期間應準備多少千克棕子才能滿足市場需求(以各區(qū)間中點值作為該區(qū)間的購買量).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將含有甲、乙、丙的6名醫(yī)護人員平均分成兩組到A、B兩家醫(yī)院參加防疫救護工作,則甲、乙至少有一人在A醫(yī)院且甲、丙不在同一家醫(yī)院參加防疫救護工作的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數方程是t為參數),直線l與曲線C相交于A,B兩點.

1)求的長;

2)求點A,B兩點的距離之積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,若存在非零實數,使得點,都在的圖象上,則實數的取值范圍是______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)質量檢驗員為了檢測生產線上零件的質量情況,從生產線上隨機抽取了個零件進行測量,根據所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:

1)根據頻率分布直方圖,求這個零件尺寸的中位數(結果精確到);

2)若從這個零件中尺寸位于之外的零件中隨機抽取個,設表示尺寸在上的零件個數,求的分布列及數學期望;

3)已知尺寸在上的零件為一等品,否則為二等品,將這個零件尺寸的樣本頻率視為概率. 現(xiàn)對生產線上生產的零件進行成箱包裝出售,每箱. 企業(yè)在交付買家之前需要決策是否對每箱的所有零件進行檢驗,已知每個零件的檢驗費用為. 若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進入買家手中,企業(yè)要向買家對每個二等品支付元的賠償費用. 現(xiàn)對一箱零件隨機抽檢了個,結果有個二等品,以整箱檢驗費用與賠償費用之和的期望值作為決策依據,該企業(yè)是否對該箱余下的所有零件進行檢驗?請說明理由.

查看答案和解析>>

同步練習冊答案