等差數(shù)列{}中,=200,=2 700,則公差d等于(   )

A.-1               B.1                C.5                       D.50

B

解析:由=200,

得50a50-(1+2+…+49)d=200;①

=2 700,

得50a50+(1+2+…+50)d=2 700.②

②-①得2 500d=2 500.∴d=1.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,a3+a6=17,a1a8=-38且a1<a8
(1)求{an}的通項公式;
(2)調(diào)整數(shù)列{an}的前三項a1、a2、a3的順序,使它成為等比數(shù)列{bn}的前三項,求{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

5、在各項均不為零的等差數(shù)列{an}中,若an+1-an2+an-1=0(n≥2),則S2n-1-4n=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知三個點列{An},{Bn},{Cn},其中An(n,an),Bn(n,bn),Cn(n-1,0),滿足向量
AnAn+1
與向量
BnCn
平行,并且點列{Bn}在斜率為6的同一直線上,n=1,2,3,….
(1)證明:數(shù)列{bn}是等差數(shù)列;
(2)試用a1,b1與n表示an(n≥2);
(3)設(shè)a1=a,b1=-a,是否存在這樣的實數(shù)a,使得在a6與a7兩項中至少有一項是數(shù)列{an}的最小項?若存在,請求出實數(shù)a的取值范圍;若不存在,請說明理由;
(4)若a1=b1=3,對于區(qū)間[0,1]上的任意λ,總存在不小于2的自然數(shù)k,當n≥k時,an≥(1-λ)(9n-6)恒成立,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,Sn是其前n項和,a1=-11,
S10
10
-
S8
8
=2,則S11=
-11
-11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中a1=1,當n≥2時,an,Sn,Sn-
1
2
成等比數(shù)列.
(1)證明:數(shù)列{
1
Sn
}
是等差數(shù)列;
(2)求數(shù)列{
1
(1-2n)an
}
前n項的和Tn

查看答案和解析>>

同步練習冊答案