已知拋物線的焦點為F,過拋物線在第一象限部分上一點P的切線為,過P點作平行于軸的直線,過焦點F作平行于的直線交于M,若,則點P的坐標(biāo)為         。

試題分析:設(shè),拋物線在第一象限的函數(shù)式為,,切線斜率,切線方程為與x軸交點A,結(jié)合圖形可知由,P點
點評:導(dǎo)數(shù)的幾何意義:函數(shù)在某一點處的導(dǎo)數(shù)值等于該點處的切線斜率,本題依次求出切線方程,進(jìn)而確定相關(guān)點坐標(biāo)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓)的離心率為,過右焦點且斜率為1的直線交橢圓兩點,為弦的中點。
(1)求直線為坐標(biāo)原點)的斜率
(2)設(shè)橢圓上任意一點,且,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在平面直角坐標(biāo)系中,橢圓的焦距為2,且過點.
求橢圓的方程;
若點,分別是橢圓的左、右頂點,直線經(jīng)過點且垂直于軸,點是橢圓上異于,的任意一點,直線于點

(。┰O(shè)直線的斜率為直線的斜率為,求證:為定值;
(ⅱ)設(shè)過點垂直于的直線為.求證:直線過定點,并求出定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓左、右焦點分別為F1、F2,點,點F2在線段PF1的中垂線上。
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于M、N兩點,直線F2M與F2N的傾斜角互補,求證:直線過定點,并求該定點的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)已知橢圓的左焦點的坐標(biāo)為是它的右焦點,點是橢圓上一點, 的周長等于
(1)求橢圓的方程;
(2)過定點作直線與橢圓交于不同的兩點,且(其中為坐標(biāo)原點),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知拋物線和點,若拋物線上存在不同兩點、滿足
(I)求實數(shù)的取值范圍;
(II)當(dāng)時,拋物線上是否存在異于的點,使得經(jīng)過三點的圓和拋物線在點處有相同的切線,若存在,求出點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若點P在曲線C1上,點Q在曲線C2:(x-2)2y2=1上,點O為坐標(biāo)原點,則的最大值是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分,(Ⅰ)小問3分,(Ⅱ)小問9分.)
直線稱為橢圓的“特征直線”,若橢圓的離心率.(1)求橢圓的“特征直線”方程;
(2)過橢圓C上一點作圓的切線,切點為P、Q,直線PQ與橢圓的“特征直線”相交于點EF,O為坐標(biāo)原點,若取值范圍恰為,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標(biāo)原點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交A,B且?若存在,寫出該圓的方程,若不存在說明理由。

查看答案和解析>>

同步練習(xí)冊答案