【題目】將函數(shù)f(x)=sinωx(ω>0)的圖象向右平移 個(gè)單位后得到函數(shù)g(x)的圖象,若對(duì)于滿(mǎn)足|f(x1)﹣g(x2)|=2的x1 , x2 , 有|x1﹣x2|min= ,則f( )的值為

【答案】1
【解析】解:將函數(shù)f(x)=sinωx(ω>0)的圖象向右平移 個(gè)單位后得到函數(shù)g(x)=sinω(x﹣ )的圖象,

若對(duì)于滿(mǎn)足|f(x1)﹣g(x2)|=2的x1,x2,有|x1﹣x2|min= ,則 = ,∴T= =π,∴ω=2,

f(x)=sin2x,

則f( )=sin =1,

所以答案是:1.

【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在區(qū)間D上,如果函數(shù)f(x)為減函數(shù),而xf(x)為增函數(shù),則稱(chēng)f(x)為D上的弱減函數(shù).若f(x)=
(1)判斷f(x)在區(qū)間[0,+∞)上是否為弱減函數(shù);
(2)當(dāng)x∈[1,3]時(shí),不等式 恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)g(x)=f(x)+k|x|﹣1在[0,3]上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系內(nèi),已知A(3,3)是⊙C上一點(diǎn),折疊該圓兩次使點(diǎn)A分別與圓上不相同的兩點(diǎn)(異于點(diǎn)A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,若⊙C上存在點(diǎn)P,使∠MPN=90°,其中M、N的坐標(biāo)分別為(﹣m,0)(m,0),則m的最大值為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤(rùn)分別為P和Q(萬(wàn)元),它們與投入資金m(萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式P= m+65,Q=76+4 ,今將150萬(wàn)元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投資金額不低于25萬(wàn)元.
(1)設(shè)對(duì)乙產(chǎn)品投入資金x萬(wàn)元,求總利潤(rùn)y(萬(wàn)元)關(guān)于x的函數(shù)關(guān)系式及其定義域;
(2)如何分配使用資金,才能使所得總利潤(rùn)最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1的側(cè)棱與底面垂直,AC=9,BC=12,AB=15,AA1=12,
點(diǎn)D是AB的中點(diǎn).

(1)求證:AC⊥B1C
(2)求證:AC1∥平面CDB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cosα,sinα), =(﹣2,2).
(1)若 = ,求(sinα+cosα)2的值;
(2)若 ,求sin(π﹣α)sin( )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+4x+a﹣5,g(x)=m4x1﹣2m+7.
(1)若函數(shù)f(x)在區(qū)間[﹣1,1]上存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=0時(shí),若對(duì)任意的x1∈[1,2],總存在x2∈[1,2],使f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍;
(3)若y=f(x)(x∈[t,2])的置于為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長(zhǎng)度為6﹣4t?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由. (注:區(qū)間[p,q]的長(zhǎng)度q﹣p)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù) 的圖象與x軸有公共點(diǎn),則m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的中心在原點(diǎn)O,短軸長(zhǎng)為 ,左焦點(diǎn)為F(﹣c,0)(c>0),直線 與x軸交于點(diǎn)A,且 ,過(guò)點(diǎn)A的直線與橢圓相交于P,Q兩點(diǎn).

(1)求橢圓的方程.
(2)若 ,求直線PQ的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案