【題目】在區(qū)間D上,如果函數(shù)f(x)為減函數(shù),而xf(x)為增函數(shù),則稱f(x)為D上的弱減函數(shù).若f(x)=
(1)判斷f(x)在區(qū)間[0,+∞)上是否為弱減函數(shù);
(2)當(dāng)x∈[1,3]時(shí),不等式 恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)g(x)=f(x)+k|x|﹣1在[0,3]上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)k的取值范圍.
【答案】
(1)解:由初等函數(shù)性質(zhì)知, 在[0,+∞)上單調(diào)遞減,
而 在[0,+∞)上單調(diào)遞增,
所以 是[0,+∞)上的弱減函數(shù).
(2)解:不等式化為 在x∈[1,3]上恒成立,則 ,
而 在[1,3]單調(diào)遞增,∴ 的最小值為 , 的最大值為 ,
∴ ,∴a∈[﹣1, ].
(3)解:由題意知方程 在[0,3]上有兩個(gè)不同根,
①當(dāng)x=0時(shí),上式恒成立;
②當(dāng)x∈(0,3]時(shí),則由題意可得方程 只有一解,
根據(jù) ,
令 ,則t∈(1,2],
方程化為 在t∈(1,2]上只有一解,所以 .
【解析】(1)利用初等函數(shù)的性質(zhì)、弱減函數(shù)的定義,判斷 是[0,+∞)上的弱減函數(shù).(2)根據(jù)題意可得 ,再利用函數(shù)的單調(diào)性求得函數(shù)的最值,可得a的范圍.(3)根據(jù)題意,當(dāng)x∈(0,3]時(shí),方程 只有一解,分離參數(shù)k,換元利用二次函數(shù)的性質(zhì),求得k的范圍.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)單調(diào)性的性質(zhì),需要了解函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是公比q>1的等比數(shù)列,若a2005和a2006是方程4x2﹣8x+3=0的兩個(gè)根,則a2007+a2008= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京市為了緩解交通壓力,計(jì)劃在某路段實(shí)施“交通限行”,為調(diào)查公眾對(duì)該路段“交通限行”的態(tài)度,某機(jī)構(gòu)從經(jīng)過該路段的人員中隨機(jī)抽查了80人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理,制成表:
年齡(歲) | [15,30) | [30,45) | [45,60) | [60,75) |
人數(shù) | 24 | 26 | 16 | 14 |
贊成人數(shù) | 12 | 14 | x | 3 |
(1)若經(jīng)過該路段的人員對(duì)“交通限行”的贊成率為0.40,求x的值;
(2)在(1)的條件下,若從年齡在[45,60),[60,75)內(nèi)的兩組贊成“交通限行”的人中在隨機(jī)選取2人進(jìn)行進(jìn)一步的采訪,求選中的2人中至少有1人來自[60,75)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代城市大多是棋盤式布局(如上海道路幾乎都是東西和南北走向).在這樣的城市中,我們說的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線距離(位移),而是實(shí)際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義A(x1 , y1)、B(x2 , y2)兩點(diǎn)間的“直角距離”為:D(AB)=|x1﹣x2|+|y1﹣y2|.
(1)在平面直角坐標(biāo)系中,寫出所有滿足到原點(diǎn)的“直角距離”
為2的“格點(diǎn)”的坐標(biāo);(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn))
(2)定義:“圓”是所有到定點(diǎn)“直角距離”為定值的點(diǎn)組成的圖形,點(diǎn)A(1,3),B(1,1),C(3,3),求經(jīng)過這三個(gè)點(diǎn)確定的一個(gè)“圓”的方程,并畫出大致圖象;
(3)設(shè)P(x,y),集合B表示的是所有滿足D(PO)≤1的點(diǎn)P所組成的集合,
點(diǎn)集A={(x,y)|﹣1≤x≤1,﹣1≤y≤1},
求集合Q={(x,y)|x=x1+x2 , y=y1+y2 , (x1 , y1)∈A,(x2 , y2)∈B}所表示的區(qū)域的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=b+logax(x>0且a≠1)的圖象經(jīng)過點(diǎn)(8,2)和(1,﹣1).
(1)求f(x)的解析式;
(2)[f(x)]2=3f(x),求實(shí)數(shù)x的值;
(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值及其最小值時(shí)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知銳角△ABC的三內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,且2csinB= b.
(1)求角C的大。
(2)若邊c=1,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{bn}的前n項(xiàng)和是Sn , 且bn=1﹣2Sn , 又?jǐn)?shù)列{an}、{bn}滿足點(diǎn){an , 3 }在函數(shù)y=( )x的圖象上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=anbn+ ,求數(shù)列{an}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論: ①已知函數(shù)f(x)是定義在R上的奇函數(shù),若f(﹣1)=2,f(﹣3)=﹣1,則f(3)<f(﹣1);
②函數(shù)y=log (x2﹣2x)的單調(diào)遞增減區(qū)間是(﹣∞,0);
③已知函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2 , 則當(dāng)x<0時(shí),f(x)=﹣x2;
④若函數(shù)y=f(x)的圖象與函數(shù)y=ex的圖象關(guān)于直線y=x對(duì)稱,則對(duì)任意實(shí)數(shù)x,y都有f(xy)=f(x)+f(y).
則正確結(jié)論的序號(hào)是(請(qǐng)將所有正確結(jié)論的序號(hào)填在橫線上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sinωx(ω>0)的圖象向右平移 個(gè)單位后得到函數(shù)g(x)的圖象,若對(duì)于滿足|f(x1)﹣g(x2)|=2的x1 , x2 , 有|x1﹣x2|min= ,則f( )的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com