【題目】已知函數(shù).
(Ⅰ)已知是的一個極值點(diǎn),求曲線在處的切線方程
(Ⅱ)討論關(guān)于的方程根的個數(shù).
【答案】(Ⅰ);(Ⅱ)見解析
【解析】
(Ⅰ)求函數(shù)的導(dǎo)數(shù),利用x=2是f (x)的一個極值點(diǎn),得f' (2) =0建立方程求出a的值,結(jié)合導(dǎo)數(shù)的幾何意義進(jìn)行求解即可;
(Ⅱ)利用參數(shù)法分離法得到,構(gòu)造函數(shù)求出函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,利用數(shù)形結(jié)合轉(zhuǎn)化為圖象交點(diǎn)個數(shù)進(jìn)行求解即可.
(Ⅰ)因為,則,
因為是的一個極值點(diǎn),所以,即,
所以,
因為,,
則直線方程為,即;
(Ⅱ)因為,所以,
所以,設(shè),則,
所以在上是增函數(shù),在上是減函數(shù),
故,
所以,所以,
設(shè),則,
所以在上是減函數(shù),上是增函數(shù),
所以,
所以當(dāng)時,,函數(shù)在是減函數(shù),
當(dāng)時,,函數(shù)在是增函數(shù),
因為時,,,,
所以當(dāng)時,方程無實數(shù)根,
當(dāng)時,方程有兩個不相等實數(shù)根,
當(dāng)或時,方程有1個實根.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年4月25日-27日,北京召開第二屆“一帶一路”國際高峰論壇,組委會要從6個國內(nèi)媒體團(tuán)和3個國外媒體團(tuán)中選出3個媒體團(tuán)進(jìn)行提問,要求這三個媒體團(tuán)中既有國內(nèi)媒體團(tuán)又有國外媒體團(tuán),且國內(nèi)媒體團(tuán)不能連續(xù)提問,則不同的提問方式的種數(shù)為 ( )
A. 198B. 268C. 306D. 378
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2018·石家莊一檢]已知函數(shù).
(1)若,求函數(shù)的圖像在點(diǎn)處的切線方程;
(2)若函數(shù)有兩個極值點(diǎn),,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )
A. 45B. 15C. 10D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),其中,,為實常數(shù)
(1)若時,討論函數(shù)的單調(diào)性;
(2)若時,不等式在上恒成立,求實數(shù)的取值范圍;
(3)若,當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若曲線在點(diǎn)處的切線方程為,求a的值;
(2)若是函數(shù)的極值點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點(diǎn),且與直線l:相切.
(1)求動圓圓心的軌跡C的方程;
(2)過F作斜率為的直線m與C交于兩點(diǎn)A,B,過A,B分別作C的切線,兩切線交點(diǎn)為P,證明:點(diǎn)P始終在直線l上且.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com