【題目】眾所周知,乒乓球是中國的國球,乒乓球隊內(nèi)部也有著很嚴格的競爭機制,為了參加國際大賽,種子選手甲與三位非種子選手乙、丙、丁分別進行一場內(nèi)部對抗賽,按以往多次比賽的統(tǒng)計,甲獲勝的概率分別為,,,且各場比賽互不影響

1若甲至少獲勝兩場的概率大于,則甲入選參加國際大賽參賽名單,否則不予入選,問甲是否會入選最終的大名單?

2求甲獲勝場次的分布列和數(shù)學期望

【答案】1甲會入選最終的大名單;2分布列見解析,

【解析】

試題分析:1借助題設條件運用概率的知識推證;2借助題設運用隨機變量的概率分布和數(shù)學期望公式求解

試題解析:

1進行對抗賽獲勝的事件分別為,至少獲勝兩場的事件為,

,,

由于事件相互獨立,

所以

,

由于,所以會入選最終的大名單………………6分

2獲勝場數(shù)的可能取值為0,1,2,3,則

………………7分

,

所以獲勝場數(shù)的分布列為:

………………………………11分

數(shù)學期望為………………12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某班倡議假期每位學生至少閱讀一本名著,為了解學生的閱讀情況,對該班所有學生進行了調(diào)查調(diào)查結(jié)果如下表:

1試根據(jù)上述數(shù)據(jù),求這個班級女生閱讀名著的平均本數(shù);

2若從閱讀5本名著的學生中任選2人交流讀書心得,求選到男生和女生各1人的概率;

3試比較該班男生閱讀名著本數(shù)的方差與女生閱讀名著本數(shù)的方差的大小只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求適合下列條件的直線方程:

(1)經(jīng)過點P(3,2)且在兩坐標軸上的截距相等;

(2)經(jīng)過點A(-1,-3),傾斜角等于直線y=3x的傾斜角的2倍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1

若函數(shù)處的切線過點,求的值;

時,若函數(shù)上沒有零點,求的取值范圍

2設函數(shù),且,求證: 時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系,曲線與直線)交于,兩點

(1)當分別求在點處的切線方程;

(2)軸上是否存在點,使得當變動時,總有說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,分別為橢圓)的左、右兩個焦點.

(1)若橢圓上的點兩點的距離之和等于,求橢圓的方程和焦點坐標;

(2)設點是(1)中所得橢圓上的動點,,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,,,的中點,是等腰三角形,的中點,上一點

I平面,求;

II平面將三棱柱分成兩個部分,求較小部分與較大部分的體積之比

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1)求的單調(diào)區(qū)間;

2)若為整數(shù), 且當,, 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1的切線與直線平行,求的值;

2不等式對于的一切值恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案