【題目】已知?jiǎng)狱c(diǎn)E到點(diǎn)A2,0)與點(diǎn)B-20)的直線斜率之積為-,點(diǎn)E的軌跡為曲線C

1)求曲線C的方程;

2)過(guò)點(diǎn)Dl0)作直線l與曲線C交于P,Q兩點(diǎn),且=-.求直線l的方程.

【答案】(1)+y2=1x±2);(2x±y-1=0

【解析】

1)根據(jù)題意表示出點(diǎn)到兩點(diǎn)的斜率,得到點(diǎn)的軌跡方程.

2)當(dāng)直線斜率不存在時(shí),表示出,說(shuō)明其不成立;當(dāng)直線斜率存在時(shí),設(shè)出直線方程,與橢圓聯(lián)立,得到,再用表示出,得到關(guān)于斜率的方程,解出,得到直線的方程.

1動(dòng)點(diǎn)到點(diǎn)與點(diǎn)的直線斜率之積為,

化為:,即為點(diǎn)的軌跡曲線C的方程.

2)當(dāng)軸時(shí),的方程為:,

代入:,解得

.不符合題意,舍去.

當(dāng)軸不垂直時(shí),

設(shè)的方程為:,

代入:,

化為:

設(shè)

則:,

,解得

直線的方程

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程的曲線是圓

1)求實(shí)數(shù)的取值范圍;

2)若直線與圓相交于、兩點(diǎn),且為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的值;

3)當(dāng)時(shí),設(shè)為直線上的動(dòng)點(diǎn),過(guò)作圓的兩條切線、,切點(diǎn)分別為、,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義區(qū)間,,的長(zhǎng)度為.如果一個(gè)函數(shù)的所有單調(diào)遞增區(qū)間的長(zhǎng)度之和為(其中,為自然對(duì)數(shù)的底數(shù)),那么稱這個(gè)函數(shù)為“函數(shù)”.下列四個(gè)命題:

①函數(shù)不是“函數(shù)”;

②函數(shù)是“函數(shù)”,且

③函數(shù)是“函數(shù)”;

④函數(shù)是“函數(shù)”,且.

其中正確的命題的個(gè)數(shù)為( )

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題pxR,2mx2+mx-<0,命題q:2m+1>1.若“pq”為假,“pq”為真,則實(shí)數(shù)m的取值范圍是( 。

A. (-3,-1)∪[0,+∞) B. (-3,-1]∪[0,+∞)

C. (-3,-1)∪(0,+∞) D. (-3,-1]∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C=2px經(jīng)過(guò)點(diǎn)(1,2).過(guò)點(diǎn)Q(0,1)的直線l與拋物線C有兩個(gè)不同的交點(diǎn)A,B,且直線PAy軸于M,直線PBy軸于N

求直線l的斜率的取值范圍

設(shè)O為原點(diǎn),,求證為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)不等式組所表示的平面區(qū)域?yàn)?/span>,其面積為.①若,則的值唯一;②若,則的值有2個(gè);③若為三角形,則;④若為五邊形,則.以上命題中,真命題的個(gè)數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABCDA1B1C1D1是長(zhǎng)方體,OB1D1的中點(diǎn),直線A1C交平面AB1D1于點(diǎn)M,則下列結(jié)論正確是( )

A.A,M,O三點(diǎn)共線B.A,M,O,A1不共面

C.A,M,C,O不共面D.B,B1,O,M共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)絡(luò)平臺(tái)從購(gòu)買該平臺(tái)某課程的客戶中,隨機(jī)抽取了100位客戶的數(shù)據(jù),并將這100個(gè)數(shù)據(jù)按學(xué)時(shí)數(shù),客戶性別等進(jìn)行統(tǒng)計(jì),整理得到如表:

學(xué)時(shí)數(shù)

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根據(jù)上表估計(jì)男性客戶購(gòu)買該課程學(xué)時(shí)數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留小數(shù)點(diǎn)后兩位);

(2)從這100位客戶中,對(duì)購(gòu)買該課程學(xué)時(shí)數(shù)在20以下的女性客戶按照分層抽樣的方式隨機(jī)抽取7人,再?gòu)倪@7人中隨機(jī)抽取2人,求這2人購(gòu)買的學(xué)時(shí)數(shù)都不低于15的概率.

(3)將購(gòu)買該課程達(dá)到25學(xué)時(shí)及以上者視為“十分愛(ài)好該課程者”,25學(xué)時(shí)以下者視,為“非十分愛(ài)好該課程者”.請(qǐng)根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為“十分愛(ài)好該課程者”與性別有關(guān)?

非十分愛(ài)好該課程者

十分愛(ài)好該課程者

合計(jì)

男性

女性

合計(jì)

100

附:,

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1F2分別是橢圓C1(>b0)的左、右焦點(diǎn),過(guò)F2且不與x軸垂直的動(dòng)直線l與橢圓交于M,N兩點(diǎn),點(diǎn)P是橢圓C右準(zhǔn)線上一點(diǎn),連結(jié)PM,PN,當(dāng)點(diǎn)P為右準(zhǔn)線與x軸交點(diǎn)時(shí)有2PF2F1F2

1)求橢圓C的離心率;

2)當(dāng)點(diǎn)P的坐標(biāo)為(2,1)時(shí),求直線PM與直線PN的斜率之和.

查看答案和解析>>

同步練習(xí)冊(cè)答案