分析 區(qū)分圖象的對稱軸與區(qū)間[-1,+∞)的關(guān)系,根據(jù)二次函數(shù)在對稱軸兩邊的單調(diào)性,求最小值即可.
解答 解:設(shè)f(x)=x2-2ax+2=(x-a)2+2-a2
∴f(x)圖象的對稱軸為x=a
為使f(x)≥a在[-1,+∞)上恒成立,
只需f(x)在[-1,?+∞)上的最小值比a大或等于a即可
當(dāng)a≤-1時,f(-1)最小,
∴$\left\{\begin{array}{l}{a≤-1}\\{f(-1)=1+2a+2≥a}\end{array}\right.$,
解得-3≤a≤-1
當(dāng)a≥-1時,f(a)最小,
∴$\left\{\begin{array}{l}{a≥-1}\\{f(a)=2-{a}^{2}≥a}\end{array}\right.$
解得-1≤a≤1
綜上所述-3≤a≤1,.
點(diǎn)評 本題考查二次函數(shù)在給定區(qū)間上的恒成立問題,關(guān)鍵是討論對稱軸與區(qū)間的關(guān)系,轉(zhuǎn)化為對稱軸左右單調(diào)性相反,從而確定函數(shù)最值,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com