14.拋物線C:y2=16x,C與直線l:y=x-4交于A,B兩點,則AB中點到y(tǒng)軸距離為12.

分析 把直線與拋物線的方程聯(lián)立,消去y得到一個關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系求出兩根之和x1+x2,即可求出AB中點到y(tǒng)軸距離.

解答 解:把直線方程與拋物線方程聯(lián)立得$\left\{\begin{array}{l}{{y}^{2}=16x}\\{y=x-4}\end{array}\right.$,
消去y得到x2-24x+16=0,利用根與系數(shù)的關(guān)系得到x1+x2=24,
∴AB中點到y(tǒng)軸距離為12,
故答案為:12.

點評 考查學(xué)生會求直線與拋物線的交點坐標(biāo),靈活運用根與系數(shù)的關(guān)系及中點坐標(biāo)公式化簡求值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若不等式x2-2ax+a>0,對x∈R恒成立,則實數(shù)a取值范圍為(  )
A.{a|1<a<2}B.{a|-2<a<1}C.{a|0<a<2}D.{a|0<a<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.等比數(shù)列{an}中,an>0,a1和a99為方程x2-10x+16=0的兩根,則a20•a50•a80的值為64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列說法的正確的是( 。
A.經(jīng)過定點P0(x0,y0)的直線都可以用方程y-y0=k(x-x0)表示
B.經(jīng)過定點A(0,b)的直線都可以用方程y=kx+b表示
C.不經(jīng)過原點的直線都可以用方程$\frac{x}{a}$+$\frac{y}$=1表示P1(x1,y1)、P2(x2,y2
D.經(jīng)過任意兩個不同的點的直線都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)來表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x3+ax2+bx+c在$x=-\frac{2}{3}$與x=1時都取得極值.
(Ⅰ) 求a,b的值;
(Ⅱ) 函數(shù)f(x)的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.定義:f1(x)=f(x),當(dāng)n≥2且x∈N*時,fn(x)=f(fn-1(x)),對于函數(shù)f(x)定義域內(nèi)的x0,若正在正整數(shù)n是使得fn(x0)=x0成立的最小正整數(shù),則稱n是點x0的最小正周期,x0稱為f(x)的n~周期點,已知定義在[0,1]上的函數(shù)f(x)的圖象如圖,對于函數(shù)f(x),下列說法正確的是①②③(寫出所有正確命題的編號)
①1是f(x)的一個3~周期點;
②3是點$\frac{1}{2}$的最小正周期;
③對于任意正整數(shù)n,都有fn(${\frac{2}{3}}$)=$\frac{2}{3}$;
④若x0∈($\frac{1}{2}$,1],則x0是f(x)的一個2~周期點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{1}{2}$,兩個焦點恰好在圓O:x2+y2=1上,若過橢圓C左焦點F的直線l與圓O的另一個交點為G,線段FG的中點為M,直線MO交橢圓C于A,B兩點,且|AB|=$2\sqrt{2}$|FG|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某中學(xué)為了解初三年級學(xué)生“擲實心球”項目的整體情況,隨機(jī)抽取男、女生各20名進(jìn)行測試,記錄的數(shù)據(jù)如下:

已知該項目評分標(biāo)準(zhǔn)為:
 男生投擲距離(米)[5.4,6.0)[6.0,6.6)[6.6,7.4)[7.4,7.8)[7.8,8.6)[8.6,10.0)[10.0,+∞)
 
 女生投擲距離(米)
 
[5.1,5.4)[5.4,5.6)[5.6,6.4)[6.4,6.8)[6.8,7.2)[7.2,7.6)[7.6,+∞)
 個人得分(分) 
 4 5 6 7 8 9 10
注:滿分10分,且得9分以上(含9分)定為“優(yōu)秀”.
(Ⅰ)求上述20名女生得分的中位數(shù)和眾數(shù);
(Ⅱ)從上述20名男生中,隨機(jī)抽取2名,求抽取的2名男生中優(yōu)秀人數(shù)X的分布列;
(Ⅲ)根據(jù)以上樣本數(shù)據(jù)和你所學(xué)的統(tǒng)計知識,試估計該年級學(xué)生實心球項目的整體情況.(寫出兩個結(jié)論即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如果a>0>b且a+b>0,那么以下不等式正確的個數(shù)是( 。
①a2b<b3 ②$\frac{1}{a}>0>\frac{1}$   ③a3<ab2 ④a2>b2
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案