如圖,120°的二面角的棱上有A,B兩點,AC,BD分別是在這個二面角的兩個半平面內垂直于AB的線段,且AB=4cm,AC=6cm,BD=8cm,則CD的長為
 
考點:點、線、面間的距離計算
專題:空間位置關系與距離
分析:由已知可得 
CD
=
CA
+
AB
+
BD
,
CA
AB
=0,
AB
BD
=0,利用數(shù)量積的性質即可得出.
解答: 解:由條件,知 
CA
AB
=0,
AB
BD
=0.
所以|
CD
|2=|
CA
|2+|
AB
|2+|
BD
|2+2
CA
AB
+2
AB
BD
+2
CA
BD

=62+42+82+2×6×8cos60°=164,
所以CD=2
41
cm,
故答案為:2
41
cm.
點評:本題考查面面角,考查空間距離的計算,熟練掌握向量的運算和數(shù)量積運算是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:?x1,x2∈R,[f(x2)-f(x1)](x1-x2)≥0,則¬p是( 。
A、?x1,x2∈R,[f(x2)-f(x1)](x1-x2)≤0
B、?x1,x2∈R,[f(x2)-f(x1)](x1-x2)≤0
C、?x1,x2∈R,[f(x2)-f(x1)](x1-x2)π≥0
D、?x1,x2∈R,[f(x2)-f(x1)](x1-x2)π≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設α是空間中的一個平面,l,m,n是三條不同的直線,則下列命題中正確的是(  )
A、若m?α,n?α,l⊥m,l⊥n,則l⊥α
B、若m?α,n⊥α,l⊥n,則l∥m
C、若l⊥m,l⊥n,則n∥m
D、若m⊥α,n⊥α,則n∥m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(Ⅰ)求證:無論m取什么實數(shù),直線l都過定點,并寫出這個定點的坐標;
(Ⅱ)求直線l被圓C截得的弦長最短時l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是公差不為零的等差數(shù)列,且a2=3,又a4,a5,a8成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求Sn及使得Sn最大的序號n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(
1
2
)
x
的圖象與函y=g(x)的圖象關于直線y=x對稱,令h(x)=g(1-x2),則關于h(x)有下列命題:
①h(x)的圖象關于原點對稱;         
②h(x)為偶函數(shù);
③h(x)的最小值為0;               
④h(x)在(0,1)上為增函數(shù).
其中正確命題的序號為
 
.(將你認為正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}是遞增的等差數(shù)列,且a1+a6=-6,a3•a4=8.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{|an|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐S-ABC是三條側棱兩兩垂直的三棱錐,O是底面△ABC內的一點,則G=tan∠OSA•tan∠OSB•tan∠OSC的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點M到A(0,1)的距離比它到x軸的距離多一個單位.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)過點N(2,1)作曲線C的切線l,求切線l的方程,并求出l與曲線C及y軸所圍成圖形的面積S.

查看答案和解析>>

同步練習冊答案