【題目】試求出最小的正整數(shù),使得同時(shí)滿足:

(1)對(duì)表示不大于的最大整數(shù));

(2)190除所得的余數(shù)為11.

【答案】

【解析】

由條件(1)可知.

否則,若,則有,這與條件(1)矛盾.故必有.

為正整數(shù))代入條件(1)中的不等式得

. ①

由于為嚴(yán)格遞增函數(shù),而滿足式①,不滿足式①,

所以,式①的解為.從而條件(1)中不等式的解為.

又因99與190互質(zhì),所以,由歐拉定理得,

. ②

引理:若是正整數(shù),而是最小的正整數(shù),使得,則必有.

引理的證明:顯然(由的最小性).

,,且).

,得

.

再由為正整數(shù)且為最小者及,知只有.于是,有,即.

回到原題.

由式②及引理知.所以,.

下面求的值.

注意到,,

,,

,,

,,

所以,.

現(xiàn)有,而,且99與190互質(zhì),所以有.

及上述引理,得,即.

再由,得.于是,.

故所求的最小正整數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我市南澳縣是廣東唯一的海島縣,海區(qū)面積廣闊,發(fā)展太平洋牡蠣養(yǎng)殖業(yè)具有得天獨(dú)厚的優(yōu)勢(shì),所產(chǎn)的“南澳牡蠣”是中國國家地理標(biāo)志產(chǎn)品,產(chǎn)量高、肉質(zhì)肥、營養(yǎng)好,素有“海洋牛奶精品”的美譽(yù).根據(jù)養(yǎng)殖規(guī)模與以往的養(yǎng)殖經(jīng)驗(yàn),產(chǎn)自某南澳牡蠣養(yǎng)殖基地的單個(gè)“南澳牡蠣”質(zhì)量(克)在正常環(huán)境下服從正態(tài)分布

1)購買10只該基地的“南澳牡蠣”,會(huì)買到質(zhì)量小于20g的牡蠣的可能性有多大?

22019年該基地考慮增加人工投入,現(xiàn)有以往的人工投入增量x(人)與年收益增量y(萬元)的數(shù)據(jù)如下:

人工投入增量x(人)

2

3

4

6

8

10

13

年收益增量y(萬元)

13

22

31

42

50

56

58

該基地為了預(yù)測(cè)人工投入增量為16人時(shí)的年收益增量,建立了yx的兩個(gè)回歸模型:

模型①:由最小二乘公式可求得yx的線性回歸方程:;

模型②:由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線:的附近,對(duì)人工投入增量x做變換,令,則,且有

i)根據(jù)所給的統(tǒng)計(jì)量,求模型②中y關(guān)于x的回歸方程(精確到0.1);

ii)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測(cè)人工投入增量為16人時(shí)的年收益增量.

回歸模型

模型

模型

回歸方程

182.4

79.2

附:若隨機(jī)變量,則,

樣本的最小二乘估計(jì)公式為:,

另,刻畫回歸效果的相關(guān)指數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),討論函數(shù)的單調(diào)性;

2當(dāng),時(shí),對(duì)任意,,都有成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合,,.若集合中的所有元素都能用中不超過9個(gè)的不同元素相加表示,求,并構(gòu)造達(dá)到最小時(shí)對(duì)應(yīng)的一個(gè)集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、為大于3的整數(shù),將的立方體分割為個(gè)單位正方體,從一角的單位正方體起第層、第行、第列的單位正方體記為.求所有有序六元數(shù)組的個(gè)數(shù),使得一只螞蟻從出發(fā),經(jīng)過每個(gè)小正方體恰一次到達(dá).(注)螞蟻可以從一個(gè)單位正方體爬到另一個(gè)與之有公共面的相鄰正方體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 的左、右焦點(diǎn)分別為 為坐標(biāo)原點(diǎn), 是雙曲線上在第一象限內(nèi)的點(diǎn),直線分別交雙曲線左、右支于另一點(diǎn) ,且,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)歷戊戌年即將結(jié)束,為了迎接新年,小康、小梁、小譚、小劉、小林每人寫了一張心愿卡,設(shè)計(jì)了一個(gè)與此心愿卡對(duì)應(yīng)的漂流瓶.現(xiàn)每人隨機(jī)的選擇一個(gè)漂流瓶將心愿卡放入,則事件“至少有兩張心愿卡放入對(duì)應(yīng)的漂流瓶”的概率為___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面上有12個(gè)點(diǎn)且任意三點(diǎn)不共線.以其中任意一點(diǎn)為始點(diǎn)、另一點(diǎn)為終點(diǎn)作向量且作出所有的向量,其中,三邊向量的和為零向量的三角形稱為“零三角形”.求以這12個(gè)點(diǎn)為頂點(diǎn)的零三角形個(gè)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知若滿足有四個(gè),則的取值范圍為_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案