【題目】已知雙曲線: 的左、右焦點分別為, 為坐標原點, 是雙曲線上在第一象限內的點,直線分別交雙曲線左、右支于另一點, ,且,則雙曲線的離心率為( )
A. B. C. D.
科目:高中數學 來源: 題型:
【題目】已知函數為奇函數,且x=-1處取得極大 值2.
(1)求f(x)的解析式;
(2)過點A(1,t) 可作函數f(x)圖像的三條切線,求實數t的取值范圍;
(3)若對于任意的恒成立,求實數m取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設, ,…, 是變量和的個樣本點,直線是由這些樣本點通過最小二乘法得到的線性回歸直線(如圖),以下結論中正確的是( )
A. 和的相關系數在和之間
B. 和的相關系數為直線的斜率
C. 當為偶數時,分布在兩側的樣本點的個數一定相同
D. 所有樣本點(1,2,…, )都在直線上
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數的部分圖像如圖所示,將的圖象向右平移個單位長度后得到函數的圖象.
(1)求函數的解析式;
(2)在中,角A,B,C滿足,且其外接圓的半徑R=2,求的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,橢圓: 的離心率為,過橢圓右焦點作兩條互相垂直的弦,當其中一條弦所在直線斜率為0時,兩弦長之和為6.
(1)求橢圓的方程;
(2)是拋物線: 上兩點,且處的切線相互垂直,直線與橢圓相交于兩點,求弦的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓: 的左、右焦點分別為,上頂點為,過與垂直的直線交軸負半軸于點,且恰好是線段的中點.
(1)若過三點的圓恰好與直線相切,求橢圓的方程;
(2)在(1)的條件下, 是橢圓的左頂點,過點作與軸不重合的直線交橢圓于兩點,直線分別交直線于兩點,若直線的斜率分別為,試問: 是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓關于直線對稱的圓為.
(1)求圓的方程;
(2)過點作直線與圓交于兩點, 是坐標原點,是否存在這樣的直線,使得在平行四邊形中?若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com