某幾何體的三視圖如圖所示,則它的體積是( 。
A、5
B、6
C、
14
3
D、
19
3
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:幾何體是兩個(gè)三棱錐的組合體,判斷三棱錐的結(jié)構(gòu)特征,結(jié)合直觀圖求相關(guān)幾何量的數(shù)據(jù),把數(shù)據(jù)代入棱錐的體積公式計(jì)算.
解答: 解:由三視圖知:幾何體是兩個(gè)三棱錐的組合體,如圖:
其中SA⊥平面ABC,GC⊥平面ABC,AD=3,CD=1,SA=4,GC=2,
BD⊥AC,BD=2,
∴幾何體的體積V=
1
3
×
1
2
×3×2×4+
1
3
×
1
2
×2×1×2=4+
2
3
=
14
3

故選:C.
點(diǎn)評(píng):本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所隊(duì)員們的幾何量是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a2與a4是方程x2-6x+8=0的兩個(gè)根,若a4>a2,則a2014=( 。
A、2012B、2013
C、2014D、2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示程序框圖,則輸出的S的值為(  )
A、21B、25C、45D、93

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
的夾角為
π
6
,且
a
b
=
3
,則|
a
-
b
|的最小值為(  )
A、4-2
3
B、
3
+1
C、
3
-1
D、4+2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=Acos(ωx+φ)(A,ω>0)的圖象如圖所示,為得到g(x)=-Asin(ωx+
π
6
)的圖象,可以將f(x)的圖象( 。
A、向右平移
6
個(gè)單位長(zhǎng)度
B、向右平移
12
個(gè)單位長(zhǎng)度
C、向左平移
6
個(gè)單位長(zhǎng)度
D、向左平移
12
個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AC=
7
,AB=3,BC=2,M,N,P分別為AC,AB,BC中點(diǎn),將△ABC沿MN,NP,MP折起得到三棱錐S-MNP,三棱錐S-MNP外接球的表面積為( 。
A、10π
B、8π
C、5π
D、
5
2
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為21,則判斷框中應(yīng)填( 。
A、i<5B、i<6
C、i<7D、i<8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-4x=0.若直線y=k(x+1)上存在一點(diǎn)P,使過P所作的圓的兩條切線相互垂直,則實(shí)數(shù)k的取值范圍是(  )
A、(-∞,-2
2
B、[-2
2
,2
2
]
C、[-
2
5
5
,
2
5
5
]
D、(-∞,-2
2
]∪[2
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC是銳角三角形,且sin(B-
π
6
)cos(B-
π
3
)=
1
2

(Ⅰ)求角B的值;
(Ⅱ)求tanAtanC的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案