【題目】已知函數(shù) 的圖象過點(﹣1,2),且在點(﹣1,f(﹣1))處的切線與直線x﹣5y+1=0垂直.
(1)求實數(shù)b,c的值;
(2)求f(x)在[﹣1,e](e為自然對數(shù)的底數(shù))上的最大值.

【答案】
(1)解:當x<1時,f′(x)=﹣3x2+2x+b,

由題意得:

解得:b=c=0.


(2)解:因為

當﹣1≤x<1時,f′(x)=﹣x(3x﹣2),

解f′(x)>0得 解f′(x)<0得

∴f(x)在(﹣1,0)和( ,1)上單減,在(0, )上單增,

從而f(x)在x= 處取得極大值f( )=

又∵f(﹣1)=2,f(1)=0,

∴f(x)在[﹣1,1)上的最大值為2.

當1≤x≤e時,f(x)=alnx,

當a≤0時,f(x)≤0;

當a>0時,f(x)在[1,e]單調遞增;

∴f(x)在[1,e]上的最大值為a.

∴a≥2時,f(x)在[﹣1,e]上的最大值為a;

當a<2時,f(x)在[﹣1,e]上的最大值為2.


【解析】(1)求出x<1時的導函數(shù),令f(﹣1)=2,f′(x)=﹣5,解方程組,求出b,c的值.(2)分段求函數(shù)的最大值,利用導數(shù)先求出﹣1≤x<1時的最大值;再通過對a的討論,判斷出1≤x≤e時函數(shù)的單調性,求出最大值,再從兩段中的最大值選出最大值.
【考點精析】關于本題考查的函數(shù)的最大(小)值與導數(shù),需要了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】證明與分析
(1)已知a,b為正實數(shù).求證: + ≥a+b;
(2)某題字跡有污損,內(nèi)容是“已知|x|≤1, ,用分析法證明|x+y|≤|1+xy|”.試分析污損部分的文字內(nèi)容是什么?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業(yè),根據(jù)以往經(jīng)驗,潛水員下潛的平均速度為(米/單位時間),每單位時間的用氧量為(升),在水底作業(yè)10個單位時間,每單位時間用氧量為0.9(升),返回水面的平均速度為(米/單位時間),每單位時間用氧量為1.5(升),記該潛水員在此次考察活動中的總用氧量為(升).

(1)求關于的函數(shù)關系式;

(2)若 ,求當下潛速度取什么值時,總用氧量最少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中, 是邊長為的等邊三角形, , 分別是的中點.

(1)求證: 平面

(2)求證: 平面;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知∠BAC=90°,AB=AC=1,AA1=3,點E,F(xiàn)分別在棱BB1 , CC1上,且C1F= C1C,BE=λBB1 , 0<λ<1.

(1)當λ= 時,求異面直線AE與A1F所成角的大;
(2)當直線AA1與平面AEF所成角的正弦值為 時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|3≤3x≤27},
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面是矩形, 平面, ,以的中點為球心, 為直徑的球面交于點,交于點.

(1)求證:平面平面

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形中, , , , 分別在上, ,現(xiàn)將四邊形沿折起,使.

(1)若,在折疊后的線段上是否存在一點,使得平面?若存在,求出的值;若不存在,說明理由;

(2)求三棱錐的體積的最大值,并求出此時點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有長分別為1m、2m、3m的鋼管各3根(每根鋼管質地均勻、粗細相同附有不同的編號),從中隨機抽取2根(假設各鋼管被抽取的可能性是均等的),再將抽取的鋼管相接焊成筆直的一根.若X表示新焊成的鋼管的長度(焊接誤差不計).
(1)求X的分布列;
(2)若Y=﹣λ2X+λ+1,E(Y)>1,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案