【題目】如圖所示,該幾何體是由一個(gè)直三棱柱ADE﹣BCF和一個(gè)正四棱錐P﹣ABCD組合而成,AD⊥AF,AE=AD=2. (Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P﹣ABCD的高h(yuǎn),使得二面角C﹣AF﹣P的余弦值是 .
【答案】證明:(Ⅰ)∵幾何體是由一個(gè)直三棱柱ADE﹣BCF和一個(gè)正四棱錐P﹣ABCD組合而成,
∴AD⊥AF,AD⊥AB,
又AF∩AB=A,
∴AD⊥平面ABEF,
又AD平面PAD,
∴平面PAD⊥平面ABFE.
(Ⅱ)解:以A 為原點(diǎn),AB、AE、AD的正方向?yàn)閤,y,z軸,建立空間直角坐標(biāo)系A(chǔ)﹣xyz
設(shè)正四棱棱的高為h,AE=AD=2,
則A(0,0,0),F(xiàn)(2,2,0),C(2,0,2),P(1,﹣1,1)
設(shè)平面ACF的一個(gè)法向量 =(x,y,z),
=(2,2,0), =(2,0,2),
則 ,取x=1,得 =(1,﹣1,﹣1),
設(shè)平面ACP的一個(gè)法向量 =(a,b,c),
則 ,取b=1,則 =(﹣1,1,1+h),
二面角C﹣AF﹣P的余弦值 ,
∴|cos< >|= = = ,
解得h=1.
【解析】(Ⅰ)推導(dǎo)出AD⊥AF,AD⊥AB,從而AD⊥平面ABEF,由此能證明平面PAD⊥平面ABFE.(Ⅱ)以A 為原點(diǎn),AB、AE、AD的正方向?yàn)閤,y,z軸,建立空間直角坐標(biāo)系A(chǔ)﹣xyz,利用向量法能求出h的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:mx+8y+n=0與l2:2x+my-1=0互相平行,且l1,l2之間的距離為 ,求直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣(2a+1)x+lnx(a∈R) (Ⅰ)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=f(x)+2ax,若g(x)有兩個(gè)極值點(diǎn)x1 , x2 , 且不等式g(x1)+g(x2)<λ(x1+x2)恒成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一個(gè)矩形花園里需要鋪兩條筆直的小路,已知矩形花園長(zhǎng)AD=5m,寬AB=3m,其中一條小路定為AC,另一條小路過(guò)點(diǎn)D,問(wèn)如何在BC上找到一點(diǎn)M,使得兩條小路AC與DM相互垂直?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 平面, , , , , , .
(I)求異面直線與所成角的余弦值;
(II)求證: 平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,給出以下四個(gè)結(jié)論:
①D1C∥平面A1ABB1;②A1D1與平面BCD1相交;
③AD⊥平面D1DB;④平面BCD1⊥平面A1ABB1.
其中正確結(jié)論的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年存節(jié)期間,某服裝超市舉辦了一次有獎(jiǎng)促銷(xiāo)活動(dòng),消費(fèi)每超過(guò)600 元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種. 方案一:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,一次性摸出3個(gè)球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸到2個(gè)紅球,則打6折;若摸到1個(gè)紅球,則打7折;若沒(méi)摸到紅球,則不打折.
方案二:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個(gè)顧客均分別消費(fèi)了 600元,且均選擇抽獎(jiǎng)方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費(fèi)恰好滿(mǎn)1000元,試從概率的角度比較該顧客選擇哪一種抽獎(jiǎng)方案更合算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知奇函數(shù)f(x)滿(mǎn)足f(x+1)=﹣f(x),當(dāng)x∈(0,1)時(shí),f(x)=﹣2x , 則f(log210)等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx,g(x)=ax+ ,函數(shù)f(x)的圖象與x軸的交點(diǎn)也在函數(shù)g(x)的圖象上,且在此點(diǎn)有公切線. (Ⅰ)求a、b的值;
(Ⅱ)試比較f(x)與g(x)的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com